Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Fortuna, Elżbieta

  • Google
  • 1
  • 6
  • 11

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2011High resolution scanning transmission electron microscopy (HR STEM) analysis of re-deposited layer on ASDEX Upgrade tile11citations

Places of action

Chart of shared publication
Kurzydłowski, Krzysztof
1 / 114 shared
Rasiński, Marcin
1 / 5 shared
Mayer, M.
1 / 8 shared
Lewandowska, Małgorzata
1 / 89 shared
Płociński, Tomasz
1 / 43 shared
Neu, R.
1 / 18 shared
Chart of publication period
2011

Co-Authors (by relevance)

  • Kurzydłowski, Krzysztof
  • Rasiński, Marcin
  • Mayer, M.
  • Lewandowska, Małgorzata
  • Płociński, Tomasz
  • Neu, R.
OrganizationsLocationPeople

article

High resolution scanning transmission electron microscopy (HR STEM) analysis of re-deposited layer on ASDEX Upgrade tile

  • Kurzydłowski, Krzysztof
  • Rasiński, Marcin
  • Mayer, M.
  • Lewandowska, Małgorzata
  • Fortuna, Elżbieta
  • Płociński, Tomasz
  • Neu, R.
Abstract

Erosion and re-deposition of plasma-facing components (PFCs) is one of the most important issues in fusion devices and as such it is an area of interest for many research groups. However, the structure and composition of re-deposited layers as well as the mechanism and condition of their formation are not yet fully described and understood. In the present study, the structure and the composition of co-deposited layers, which developed at the outer divertor strike point tiles in ASDEX Upgrade during the 2009 campaign were examined. High resolution scanning transmission electron microscopy (HRSTEM) combined with energy-dispersive X-ray spectroscopy (EDS) and electron energy loss spectroscopy (EELS) have been used to identify deposits composition and morphology. Tungsten foam like structure and co-deposits rich in tungsten, oxygen, carbon, boron and nitrogen were observed. © 2011 Elsevier B.V. All rights reserved.

Topics
  • Deposition
  • impedance spectroscopy
  • morphology
  • Carbon
  • Oxygen
  • Nitrogen
  • transmission electron microscopy
  • Boron
  • Energy-dispersive X-ray spectroscopy
  • tungsten
  • electron energy loss spectroscopy