People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Kruszewski, Mirosław
Warsaw University of Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (16/16 displayed)
- 2024Microstructure and Corrosion of Mg-Based Composites Produced from Custom-Made Powders of AZ31 and Ti6Al4V via Pulse Plasma Sinteringcitations
- 2024A comparative study of oxidation behavior of Co4Sb12 and Co4Sb10.8Se0.6Te0.6 skutterudite thermoelectric materials fabricated via fast SHS-PPS routecitations
- 2023Rapid fabrication of Se-modified skutterudites obtained via self-propagating high-temperature synthesis and pulse plasma sintering routecitations
- 2023In-depth analysis of the influence of bio-silica filler (Didymosphenia geminata frustules) on the properties of Mg matrix compositescitations
- 2022Thermoelectric properties of bismuth-doped magnesium silicide obtained by the self-propagating high-temperature synthesiscitations
- 2022Heat Treatment of NiTi Alloys Fabricated Using Laser Powder Bed Fusion (LPBF) from Elementally Blended Powderscitations
- 2022Influence of Ag particle shape on mechanical and thermal properties of TIM jointscitations
- 2022A comparison of the microstructure-dependent corrosion of dual-structured Mg-Li alloys fabricated by powder consolidation methods: Laser powder bed fusion vs pulse plasma sinteringcitations
- 2022Pressureless Direct Bonding of Au Metallized Substrate with Si Chips by Micro-Ag Particlescitations
- 2021Microstructure and Thermoelectric Properties of Doped FeSi2 with Addition of B4C Nanoparticlescitations
- 2020Thermoelectric properties of Cu2S obtained by high temperature synthesis and sintered by IHP methodcitations
- 2019Microstructure and thermoelectric properties of p and n type doped β-FeSi2 fabricated by mechanical alloying and pulse plasma sinteringcitations
- 2018Skutterudite (CoSb3) thermoelectric nanomaterials fabricated by Pulse Plasma in Liquidcitations
- 2017Design of interfacial Cr 3 C 2 carbide layer via optimization of sintering parameters used to fabricate copper/diamond composites for thermal management applicationscitations
- 2014Thermal conductivity enhancement of copper–diamond composites by sintering with chromium additivecitations
- 2011W/steel joint fabrication using the pulse plasma sintering (PPS) methodcitations
Places of action
Organizations | Location | People |
---|
article
W/steel joint fabrication using the pulse plasma sintering (PPS) method
Abstract
The paper presents application of pulse plasma sintering method (PPS), developed at the Faculty of the Materials Science and Engineering of Warsaw University of Technology. Unlike other electric-field assisted sintering methods, the PPS method employs pulse high-current electric discharges for heating and activating the material to be sintered. The phenomena, taking place during the high-current pulses, which heat the powder during the PPS treatment and activate the sintering process, are similar to those occurring in SPS technique. However, in PPS, thanks to much higher energy the pulse discharge, these phenomena run much more intensively. The aim of the present study was to fabricate by the PPS a joint between tungsten and Eurofer 97 steel. Because of the large difference in thermal expansion coefficients of the joined materials, stresses are induced at the joint interfaces. To reduce these stresses a thin interlayer was incorporated between the joined materials. Four different materials were tested. The experiments allowed to establish the optimal PPS sintering parameters. It was shown that the interlayers between W and Eurofer 97 steel fabricated at 1000 °C for 10 min were highly dense and no delamination at joint interfaces occurred. The results of the thermocycle tests proved a high strength of the joints produced by PPS.