Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Tsutsumi, Tatsuya

  • Google
  • 1
  • 6
  • 2

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2010Development of anticorrosion coating on low activation materials against fluoridation and oxidation in Flibe blanket environment2citations

Places of action

Chart of shared publication
Kondo, Masatoshi
1 / 25 shared
Oishi, Tatsuya
1 / 1 shared
Nagasaka, Takuya
1 / 13 shared
Motoijma, Osamu
1 / 1 shared
Sagara, Akio
1 / 7 shared
Muroga, Takeo
1 / 16 shared
Chart of publication period
2010

Co-Authors (by relevance)

  • Kondo, Masatoshi
  • Oishi, Tatsuya
  • Nagasaka, Takuya
  • Motoijma, Osamu
  • Sagara, Akio
  • Muroga, Takeo
OrganizationsLocationPeople

article

Development of anticorrosion coating on low activation materials against fluoridation and oxidation in Flibe blanket environment

  • Kondo, Masatoshi
  • Oishi, Tatsuya
  • Nagasaka, Takuya
  • Motoijma, Osamu
  • Sagara, Akio
  • Tsutsumi, Tatsuya
  • Muroga, Takeo
Abstract

W coating by vacuum plasma spray process and Cr coating by chromizing process were performed on fusion low activation materials, JLF-1 ferritic steel and NIFS-HEAT-2 vanadium alloy. The present study discusses feasibility of the coatings as anti-corrosion coating against fluoridation in Flibe for fusion low activation materials. Coatings were characterized by microstructural analysis and examination on chem-ical stability by corrosion tests. The corrosion tests were conducted with H2O–47% HF solution at RT and He–1% HF–0.06 H2O gas mixture at 823 K to simulate fluoridation and oxidation in Flibe. The coatings presented suppression of fluoride formation compared with JLF-1 or NIFS-HEAT-2, however weight loss due to WF6formation was induced, and much Cr2O3was formed.

Topics
  • corrosion
  • steel
  • activation
  • vanadium