Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Abbas, Syed Zaheer

  • Google
  • 4
  • 8
  • 36

University of Southampton

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (4/4 displayed)

  • 2022Lab-scale experimental demonstration of Ca-Cu chemical looping for hydrogen production and in-situ CO2 capture from a steel-mill10citations
  • 2022Techno-economic assessment of blast furnace gas pre-combustion decarbonisation integrated with the power generation26citations
  • 2021A Ca-Cu chemical loop process for CO2 capture in steel mills: system performance analysiscitations
  • 2021A Ca-Cu chemical loop process for CO2 capture in steel millscitations

Places of action

Chart of shared publication
Khallaghi, Navid
1 / 2 shared
Coninck, Eric De
1 / 1 shared
Spallina, Vincenzo
3 / 10 shared
Manzolini, Giampaolo
1 / 3 shared
Argyris, Panagiotis Alexandros
2 / 2 shared
Fernandez, Jose Ramon
1 / 1 shared
Abanades, Juan Carlos
2 / 4 shared
Fernández, José Ramón
1 / 3 shared
Chart of publication period
2022
2021

Co-Authors (by relevance)

  • Khallaghi, Navid
  • Coninck, Eric De
  • Spallina, Vincenzo
  • Manzolini, Giampaolo
  • Argyris, Panagiotis Alexandros
  • Fernandez, Jose Ramon
  • Abanades, Juan Carlos
  • Fernández, José Ramón
OrganizationsLocationPeople

article

Lab-scale experimental demonstration of Ca-Cu chemical looping for hydrogen production and in-situ CO2 capture from a steel-mill

  • Abbas, Syed Zaheer
Abstract

In the present work, a lab-scale packed bed reactor has been used to decarbonize mixtures of inlet gases simulating the typical composition of blast furnace gases (BFG) and convert them to H2-rich streams by means of the Casingle bondCu chemical looping concept. The reactor was packed with 355 g of Cu-based oxygen carrier (OC) supported on Al2O3 and natural Ca-based sorbent. The three main reaction stages; namely (i) Calcium Assisted Steel-mill Off-gas Hydrogen (CASOH), (ii) Cu oxidation and (iii) Regeneration of carbonated Ca-based sorbent were examined. In CASOH stage, BFG is converted into H2-rich stream (17% by vol.) under the experimental conditions of 600 °C, 5.0 bar and S/CO molar ratio of 2.0. A controlled oxidation causes a mere 3.5% of CaCO3 to decompose during the Cu-oxidation stage. This resulted in a nearly pure N2 stream at 600 °C and 5.0 bar operating conditions. During the regeneration stage, BFG and mixture of BFG and CH4 is used as a reducing fuel. To ensure the amount of heat needed for the decomposition of CaCO3 during the reduction of CuO, a 1.4 CuO/CaCO3 molar ratio has been used. It resulted in 46% CO2 in N2 at the end of the reduction/calcination stage.

Topics
  • impedance spectroscopy
  • Oxygen
  • steel
  • Hydrogen
  • Calcium
  • decomposition