People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Pirou, Stéven
Technical University of Denmark
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (15/15 displayed)
- 2024Fabrication framework for metal supported solid oxide cells via tape castingcitations
- 2024Fabrication framework for metal supported solid oxide cells via tape castingcitations
- 2024Development of glass sealants for proton conducting ceramic cells:materials, concepts and challengescitations
- 2023Solid Oxide Electrochemical Cells for Nitrogen and Oxygen Production
- 2023Perovskite/Ruddlesden-Popper composite fuel electrode of strontium-praseodymium-manganese oxide for solid oxide cells: An alternative candidatecitations
- 2022Planar proton-conducting ceramic cells for hydrogen extractioncitations
- 2022Planar proton-conducting ceramic cells for hydrogen extraction:Mechanical properties, electrochemical performance and up-scalingcitations
- 2019Hydrothermal Synthesis, Characterization, and Sintering Behavior of Core-Shell Particles: A Principle Study on Lanthanum Strontium Cobaltite Coated with Nanosized Gadolinium Doped Ceriacitations
- 2019Hydrothermal Synthesis, Characterization, and Sintering Behavior of Core-Shell Particles: A Principle Study on Lanthanum Strontium Cobaltite Coated with Nanosized Gadolinium Doped Ceriacitations
- 2018Exploring the Processing of Tubular Chromite- and Zirconia-Based Oxygen Transport Membranescitations
- 2018Exploring the Processing of Tubular Chromite- and Zirconia-Based Oxygen Transport Membranescitations
- 2018Hydrothermal Synthesis, Characterization, and Sintering Behavior of Core-Shell Particles: A Principle Study on Lanthanum Strontium Cobaltite Coated with Nanosized Gadolinium Doped Ceriacitations
- 2017Stability and performance of robust dual-phase (ZrO 2 ) 0.89 (Y 2 O 3 ) 0.01 (Sc 2 O 3 ) 0.10 -Al 0.02 Zn 0.98 O 1.01 oxygen transport membranescitations
- 2016Oxygen permeation flux through 10Sc1YSZ-MnCo2O4 asymmetric membranes prepared by two-step sinteringcitations
- 2016Oxygen permeation flux through 10Sc1YSZ-MnCo 2 O 4 asymmetric membranes prepared by two-step sinteringcitations
Places of action
Organizations | Location | People |
---|
article
Oxygen permeation flux through 10Sc1YSZ-MnCo2O4 asymmetric membranes prepared by two-step sintering
Abstract
Asymmetric membranes based on a dual phase composite consisting of (Y<sub>2</sub>O<sub>3</sub>)<sub>0.01</sub>(Sc<sub>2</sub>O<sub>3</sub>)<sub>0.10</sub>(ZrO<sub>2</sub>)<sub>0.89</sub> (10Sc1YSZ) as ionic conductor and MnCo<sub>2</sub>O<sub>4</sub> as electronic conductor were prepared and characterized with respect to sinterability, microstructure and oxygen transport properties. The composite membranes were prepared by tape casting, lamination and fired in a two-step sintering process. Microstructural analysis showed that a gastight thin membrane layer with the desired ratio of ionic/electronic conducting phases could be fabricated. Oxygen permeation fluxes across the 10SclYSZ/MnCo<sub>2</sub>O<sub>4 </sub>(70/30 vol%) composite membrane were measured from 750 to 940 degrees C using air or pure oxygen as feed gases and N<sub>2 </sub>or CO<sub>2</sub> as sweep gases. Fluxes up to 2.3 ml<sub>N</sub> min<sup>-1</sup> cm<sup>-2</sup> were obtained for the 7 μm thick membrane. A degradation test over 1730 h showed an initial degradation of 21% during the first 1100 h after which stable performance was achieved. The observed degradation is attributed to coarsening of the infiltrated catalyst. (C) 2016 Elsevier B.V. All rights reserved.