Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Konttinen, Jukka

  • Google
  • 3
  • 9
  • 57

Tampere University

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2023Evaluation of low-cost oxygen carriers for biomass chemical looping gasification11citations
  • 2017The role of inorganics in modelling of biomass gasificationcitations
  • 2016Modeling of the catalytic effects of potassium and calcium on spruce wood gasification in CO246citations

Places of action

Chart of shared publication
Ismailov, Arnold
1 / 22 shared
Moghaddam, Elyas M.
1 / 1 shared
Goel, Avishek
1 / 1 shared
He, Chao
1 / 2 shared
Demartini, Nikolai
2 / 4 shared
Gomez-Barea, Alberto
1 / 1 shared
Kramb, Jason
2 / 3 shared
Perander, Magnus
1 / 1 shared
Moilanen, Antero
1 / 3 shared
Chart of publication period
2023
2017
2016

Co-Authors (by relevance)

  • Ismailov, Arnold
  • Moghaddam, Elyas M.
  • Goel, Avishek
  • He, Chao
  • Demartini, Nikolai
  • Gomez-Barea, Alberto
  • Kramb, Jason
  • Perander, Magnus
  • Moilanen, Antero
OrganizationsLocationPeople

article

Modeling of the catalytic effects of potassium and calcium on spruce wood gasification in CO2

  • Perander, Magnus
  • Demartini, Nikolai
  • Moilanen, Antero
  • Konttinen, Jukka
  • Kramb, Jason
Abstract

Using previously reported thermogravimetric analysis measurements, the effects of calcium and potassium on the char gasification rate of spruce wood were modeled. Spruce wood was leached of inorganic ash elements and doped with measured amounts of potassium and calcium. The wood was gasified in an isothermal thermogravimetric analysis device in CO2 where the devolatilization of the wood, char formation and char gasification all occurred inside the preheated reactor. A new method for separating the effects of devolatilization and char gasification is presented. Kinetic models were evaluated for their ability to describe the observed catalytic effects of potassium and calcium on the gasification rate. Two modified versions of the random pore model were able to accurately describe the measured conversion rates and the parameters of the kinetic models were found to be dependent on the calcium and potassium concentrations. Empirical correlations were developed to predict the char conversion rate from only the potassium and calcium concentration of the sample.

Topics
  • impedance spectroscopy
  • pore
  • Potassium
  • thermogravimetry
  • random
  • Calcium
  • wood
  • gasification