Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Kang, Xia

  • Google
  • 1
  • 2
  • 9

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Fungal biorecovery of cerium as oxalate and carbonate biominerals9citations

Places of action

Chart of shared publication
Gadd, Geoffrey Michael
1 / 9 shared
Csetényi, L. J.
1 / 24 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Gadd, Geoffrey Michael
  • Csetényi, L. J.
OrganizationsLocationPeople

article

Fungal biorecovery of cerium as oxalate and carbonate biominerals

  • Kang, Xia
  • Gadd, Geoffrey Michael
  • Csetényi, L. J.
Abstract

Cerium is the most sought-after rare earth element (REE) for application in high-tech electronic devices and versatile nanomaterials. In this research, biomass-free spent culture media of Aspergillus niger and Neurospora crassa containing precipitant ligands (oxalate, carbonate) were investigated for their potential application in biorecovery of Ce from solution. Precipitation occurred after Ce3+ was mixed with biomass-free spent culture media and >99% Ce was recovered from media of both organisms. SEM showed that biogenic crystals with distinctive morphologies were formed in the biomass-free spent medium of A. niger. Irregularly-shaped nanoparticles with varying sizes ranging from 0.5 to 2 μm and amorphous biominerals were formed after mixing the carbonate-laden N. crassa supernatant, resulting from ureolysis of supplied urea, with Ce3+. Both biominerals contained Ce as the sole metal, and X-ray diffraction (XRD) and thermogravimetric analyses identified the biominerals resulting from the biomass-free A. niger and N. crassa spent media as cerium oxalate decahydrate [Ce2(C2O4)3·10H2O] and cerium carbonate [Ce2(CO3)3·8H2O], respectively. Thermal decomposition experiments showed that the biogenic Ce oxalates and carbonates could be subsequently transformed into ceria (CeO2). FTIR confirmed that both amorphous and nanoscale Ce carbonates contained carbonate (CO32−) groups. FTIR-multivariate analysis could classify the biominerals into three groups according to different Ce concentrations and showed that Ce carbonate biominerals of higher purity were produced when precipitated at higher Ce3+ concentrations. This work provides new understanding of fungal biotransformations of soluble REE species and their biorecovery using biomass-free fungal culture systems and indicates the potential of using recovered REE as precursors for the biosynthesis of novel nanomaterials.

Topics
  • nanoparticle
  • impedance spectroscopy
  • amorphous
  • scanning electron microscopy
  • x-ray diffraction
  • experiment
  • precipitation
  • thermal decomposition
  • Cerium
  • rare earth metal