People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Gadd, Geoffrey Michael
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (9/9 displayed)
- 2023Fungal biorecovery of cerium as oxalate and carbonate biomineralscitations
- 2022Fungal colonization and biomineralization for bioprotection of concretecitations
- 2022Fungal colonization and biomineralization for bioprotection of concretecitations
- 2022Fungal-induced CaCO3 and SrCO3 precipitationcitations
- 2019Enhanced antibacterial and anti-adhesive activities of silver–PTFE nanocomposite coating for urinary catheterscitations
- 2019Enhanced Antibacterial and Antiadhesive Activities of Silver-PTFE Nanocomposite Coating for Urinary Catheterscitations
- 2019Direct and indirect bioleaching of cobalt from low grade laterite and pyritic ores by Aspergillus nigercitations
- 2019Amino acid secretion influences the size and composition of copper carbonate nanoparticles synthesized by ureolytic fungicitations
- 2009Phenol degradation by Fusarium oxyrsporum GJ4 is affected by toxic catalytic polymerization mediated by copper oxidecitations
Places of action
Organizations | Location | People |
---|
article
Fungal biorecovery of cerium as oxalate and carbonate biominerals
Abstract
Cerium is the most sought-after rare earth element (REE) for application in high-tech electronic devices and versatile nanomaterials. In this research, biomass-free spent culture media of Aspergillus niger and Neurospora crassa containing precipitant ligands (oxalate, carbonate) were investigated for their potential application in biorecovery of Ce from solution. Precipitation occurred after Ce3+ was mixed with biomass-free spent culture media and >99% Ce was recovered from media of both organisms. SEM showed that biogenic crystals with distinctive morphologies were formed in the biomass-free spent medium of A. niger. Irregularly-shaped nanoparticles with varying sizes ranging from 0.5 to 2 μm and amorphous biominerals were formed after mixing the carbonate-laden N. crassa supernatant, resulting from ureolysis of supplied urea, with Ce3+. Both biominerals contained Ce as the sole metal, and X-ray diffraction (XRD) and thermogravimetric analyses identified the biominerals resulting from the biomass-free A. niger and N. crassa spent media as cerium oxalate decahydrate [Ce2(C2O4)3·10H2O] and cerium carbonate [Ce2(CO3)3·8H2O], respectively. Thermal decomposition experiments showed that the biogenic Ce oxalates and carbonates could be subsequently transformed into ceria (CeO2). FTIR confirmed that both amorphous and nanoscale Ce carbonates contained carbonate (CO32−) groups. FTIR-multivariate analysis could classify the biominerals into three groups according to different Ce concentrations and showed that Ce carbonate biominerals of higher purity were produced when precipitated at higher Ce3+ concentrations. This work provides new understanding of fungal biotransformations of soluble REE species and their biorecovery using biomass-free fungal culture systems and indicates the potential of using recovered REE as precursors for the biosynthesis of novel nanomaterials.