People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Mikkonen, Kirsi
University of Helsinki
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (13/13 displayed)
- 2024Protective role of wood hemicelluloses: Enhancing yeast probiotics survival in spray drying and storagecitations
- 2022Emulsion characterization via microfluidic devicescitations
- 2021Green Fabrication Approaches of Lignin Nanoparticles from Different Technical Ligninscitations
- 2020Comparison of novel fungal mycelia strains and sustainable growth substrates to produce humidity-resistant biocompositescitations
- 2019The Hydrophobicity of Lignocellulosic Fiber Network Can Be Enhanced with Suberin Fatty Acidscitations
- 2019Emulsifier composition of solid lipid nanoparticles (SLN) affects mechanical and barrier properties of SLN-protein composite filmscitations
- 2018Physicochemical and rheo-mechanical properties of titanium dioxide reinforced sage seed gum nanohybrid hydrogelcitations
- 2018Novel nanobiocomposite hydrogels based on sage seed gum-Laponite: Physico-chemical and rheological characterizationcitations
- 2017Synchrotron microtomography reveals the fine three-dimensional porosity of composite polysaccharide aerogelscitations
- 2017Spruce gum – a new natural Nordic stabilizer
- 2016Softwood-based sponge gelscitations
- 2010Comparison of microencapsulation properties of spruce galactoglucomannans and arabic gum using a model hydrophobic core compoundcitations
- 2008Films from spruce galactoglucomannan blended with poly(vinyl alcohol), corn arabinoxylan, and konjac glucomannan
Places of action
Organizations | Location | People |
---|
article
Protective role of wood hemicelluloses: Enhancing yeast probiotics survival in spray drying and storage
Abstract
Wood hemicelluloses, specifically galactoglucomannans (GGM) and glucuronoxylans (GX) are investigated for their efficacy in spray-dried microencapsulation of Saccharomyces cerevisiae subsp. boulardii (SB). Due to differences between bacterial and yeast probiotics, the protective capability of GGM and GX for SB warrants investigation. This study demonstrated that GGM and GX effectively protected SB during spray drying at feed concentrations of 15 and 20% and inlet air temperatures of 105 and 140°C, ensuring survival rates over 90%, comparable to gum Arabic, with all achieving over 108 cfu/g in the microcapsules. However, GGM and GX were unable to sustain SB viability when the microcapsules were stored at 33 and 75% RH (25 °C), beyond 21 and 7 days, respectively. When stored at 4 °C, GX demonstrated a greater ability to protect SB than GGM, with log-cycle reductions of 3 and 6, respectively, after two months. Microstructure analyses showed almost all SB were entrapped by wall materials, with many microcapsules having a wall thickness of 1−2 µm. Overall, GX is effective for stable yeast probiotic powders, enabling the development of new probiotic enhanced formulations with prolonged viability and stability.