People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Baroš, Petr
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (7/7 displayed)
- 2024Amines as Steel Corrosion Inhibitors in Ethanol-Gasoline Blendscitations
- 2024The Use of Amines as Steel Corrosion Inhibitors in Butanol-Gasoline Blendscitations
- 2022Methods for Testing the Steel Corrosion Inhibition in Alcohol−Gasoline Blends Using Diethylenetriaminecitations
- 2022Corrosion Aggressiveness of Ethanol-Gasoline and Butanol-Gasoline Blends on Steel: Application of Electrochemical Impedance Spectroscopycitations
- 2021Electrochemical Study of Mild Steel Resistance in Butanol-Gasoline and Ethanol-Gasoline Blendscitations
- 2018Study of Corrosion Effects of Oxidized Ethanol-Gasoline Blends on Metallic Materialscitations
- 2017Study of Corrosion of Metallic Materials in Ethanol-Gasoline Blends: Application of Electrochemical Methodscitations
Places of action
Organizations | Location | People |
---|
article
Amines as Steel Corrosion Inhibitors in Ethanol-Gasoline Blends
Abstract
Several amines with different chemical structures were tested as corrosion inhibitors for carbon steel in ethanol-gasoline blends (EGBs) using electrochemical methods. The electrochemical measurements were supplemented by surface analyses (SEM, XPS) and static corrosion tests. The findings established that the inhibition efficiency or passivation of steel in the tested EGBs was significantly influenced by the chemical structure and related physical properties of the amines. This inhibitory efficiency was somewhat dependent on the polarity of the corrosion environment and the formation of a corrosively aggressive aqueous microphase on the steel surface. Among the tested inhibitors, hexamethylenediamine, ethylenediamine, diethylenetriamine, triethylenetetramine, and piperazine exhibited the highest effectiveness. Using these amines, polarization resistances in the order of magnitude of MΩ∙cm2 were measured. The electrochemical results highlighted the superior efficiency of these amines, which was higher than 96% even at concentrations as low as 25 mg/L. At concentrations of 100 mg/L, these amines were able to compensate for 500 mg/L of the acetic acid and 20 mg/L of sodium chloride in the EGBs. The highest polarization resistance and efficiency of 9 MΩ∙cm2 and of 99.9%, respectively, were measured on mild steel in the presence of hexamethylenediamine. Its high efficiency was also confirmed during the immersion test, where an efficiency of 97.6% was found after three months of exposure.