Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Eriksson, Jan-Erik

  • Google
  • 3
  • 6
  • 23

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2023The effect of Cl, Br, and F on high-temperature corrosion of heat-transfer alloys7citations
  • 2022Corrosion of Heat Transfer Materials by Potassium-Contaminated Ilmenite Bed Particles in Chemical-Looping Combustion of Biomass10citations
  • 2018Different methods for the characterization of ash compositions in co-firing boilers6citations

Places of action

Chart of shared publication
Hupa, Leena
2 / 90 shared
Dirbeba, Meheretu Jaleta
1 / 4 shared
Lehmusto, Juho
1 / 14 shared
Silvander, Linus
1 / 1 shared
Lindberg, Daniel
1 / 24 shared
Shoulaifar, Tooran Khazraie
1 / 1 shared
Chart of publication period
2023
2022
2018

Co-Authors (by relevance)

  • Hupa, Leena
  • Dirbeba, Meheretu Jaleta
  • Lehmusto, Juho
  • Silvander, Linus
  • Lindberg, Daniel
  • Shoulaifar, Tooran Khazraie
OrganizationsLocationPeople

article

The effect of Cl, Br, and F on high-temperature corrosion of heat-transfer alloys

  • Hupa, Leena
  • Dirbeba, Meheretu Jaleta
  • Eriksson, Jan-Erik
  • Lehmusto, Juho
  • Silvander, Linus
  • Lindberg, Daniel
Abstract

The impact of small alkali halide additions on the melting behavior and corrosivity of a synthetic sulfate deposit at 500, 550, and 600 °C was investigated. Three differently alloyed commercial heat-transfer materials; low-alloyed 10CrMo9-10, stainless AISI 347, and high-alloyed Sanicro 28, were studied. The samples were exposed for 168 h in a tube furnace to a K 2 SO 4 + Na 2 SO 4 mixture containing 0.85 mol% KCl, KBr, or KF. The extent of material degradation was determined by weight loss measurements, while the morphology, thickness, and composition of the formed oxide scale were characterized with SEM-EDS. Additionally, the melting behavior of the mixtures was studied with TG-DTA. It could be concluded that already small amounts of reactive alkali halides in an otherwise inert K 2 SO 4 + Na 2 SO 4 mixture change significantly the corrosion and melting behavior of the mixture.

Topics
  • morphology
  • corrosion
  • scanning electron microscopy
  • Oxygen
  • melt
  • reactive
  • combustion
  • thermogravimetry
  • Energy-dispersive X-ray spectroscopy
  • differential thermal analysis
  • corrosivity