People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Frandsen, Flemming Jappe
Technical University of Denmark
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (24/24 displayed)
- 2023Full-scale investigations of initial deposits formation in a cement plant co-fired with coal and SRFcitations
- 2018Ash formation and deposition in coal and biomass fired combustion systems: Progress and challenges in the field of ash particle sticking and rebound behaviorcitations
- 2018Time and temperature effects on alkali chloride induced high temperature corrosion of superheaters during biomass firingcitations
- 2018Influence of Preoxidation on High-Temperature Corrosion of a FeCrAl Alloy Under Conditions Relevant to Biomass Firingcitations
- 2017Deposit Shedding in Biomass-Fired Boilers: Shear Adhesion Strength Measurementscitations
- 2017Influence of preoxidation on high temperature corrosion of a Ni-based alloy under conditions relevant to biomass firingcitations
- 2017Complementary Methods for the Characterization of Corrosion Products on a Plant-Exposed Superheater Tubecitations
- 2017Effect of flue gas composition on deposit induced high temperature corrosion under laboratory conditions mimicking biomass firing. Part I: Exposures in oxidizing and chlorinating atmospherescitations
- 2017Effect of flue gas composition on deposit induced high temperature corrosion under laboratory conditions mimicking biomass firing. Part II: Exposures in SO2 containing atmospherescitations
- 2016Adhesion Strength of Biomass Ash Deposits
- 2016Deposit Shedding in Biomass-fired Boilers: Shear Adhesion Strength Measurements
- 2015Effect of Water Vapor on High-Temperature Corrosion under Conditions Mimicking Biomass Firingcitations
- 2015High temperature corrosion during biomass firing: improved understanding by depth resolved characterisation of corrosion productscitations
- 2015Alkali chloride induced corrosion of superheaters under biomass firing conditions: Improved insights from laboratory scale studies
- 2014High Temperature Corrosion under Laboratory Conditions Simulating Biomass-Firing: A Comprehensive Characterization of Corrosion Productscitations
- 2014High temperature corrosion under conditions simulating biomass firing: depth-resolved phase identification
- 2013Modeling of sulfation of potassium chloride by ferric sulfate addition during grate-firing of biomass
- 2012Deposit Probe Measurements in Danish Grate and Pulverized Fuel Biomass Power Boilers
- 2012Combustion Aerosols from Full-Scale Suspension-Firing of Wood Pellets
- 2010Characterization and Quantification of Deposits Buildup and Removal in Biomass Suspension-Fired Boilers
- 2010Ash Deposit Formation and Removal in a Straw and Wood Suspension-Fired Boiler
- 2001Corrosion Investigations in Straw-Fired Power Plants in Denmark
- 2001The effect of Co-firing with Straw and Coal on High Temperature Corrosion
- 2000Deposit Formation in a 150 MWe Utility PF-Boiler during Co-combustion of Coal and Strawcitations
Places of action
Organizations | Location | People |
---|
article
Full-scale investigations of initial deposits formation in a cement plant co-fired with coal and SRF
Abstract
This work investigates the initial (short-term) deposit formation in a cement calciner co-fired with coal and SRF (Solid Recovered Fuel). The main objective was to evaluate and compare the tendencies of deposit formation (i.e. material deposition rate and composition) at different locations (heights) in the calciner system, during different operation conditions. A steel probe was used to collect initial deposits from four different sampling locations: i) in the kiln riser (two sampling locations), ii) in the mid calciner, and, iii) at the outlet from the bottom stage preheater cyclone (C5). After an exposure time of the probe between 1 and 20 min, the collected deposit samples were weighted and characterized by SEM-EDX, ICP-OES/IC, and XRD. Plant operation data, measured gas temperatures, as well as gas phase composition data (i.e. KCl(g) and SO 2 (g)), supported the evaluation of deposit formation. Due to high particle flux (up to approx. 61,000 kg/(m 2 ·h) in the riser duct), the average net deposit formation rate was around 500 kg/(m 2 ·h) for 1 min exposure time, decreasing to <100 kg/(m 2· h) for exposure times ≥4 min (due to spontaneous shedding and erosion). The deposits contained primarily five crystalline phases (CaO, CaCO 3 , Ca(OH) 2 , KCl, and SiO 2 ), which is in general consistence with the composition of the admitted preheated raw meal (C4 meal) at measurement locations, with a slight enrichment in KCl, suggesting some condensation of volatile elements from the high-temperature gas phase on the surface of the somewhat colder deposit particles. Further, the deposit samples obtained in the kiln riser had a higher degree of calcination (higher proportion of CaO as compared to CaCO 3 ) as compared to the admitted C4 meal, suggesting carry-over of dust from the kiln feed pipe, or fast calcination of the riser meal due to high temperature. The collected short-term deposits differ significantly from long-term (mature) deposits, which have previously been collected from the site, in terms of chemical ...