People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Rosendahl, Lasse
Aalborg University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (18/18 displayed)
- 2022Online Condition Monitoring of Rotating Machines by Self-Powered Piezoelectric Transducer from Real-Time Experimental Investigationscitations
- 2021The investigation of viscous and structural damping for piezoelectric energy harvesters using only time-domain voltage measurementscitations
- 2021Continuous co-processing of HTL bio-oil with renewable feed for drop-in biofuels production for sustainable refinery processescitations
- 2020Design Optimization of Waste Heat Recovery System around Cement Rotary Kilncitations
- 2020Catalytic Hydrothermal Liquefaction of Eucalyptus: Effect of Reaction Conditions on Bio-oils Properties.
- 2020A comprehensive electromechanically coupled model for non-uniform piezoelectric energy harvesting composite laminatescitations
- 2020A broadband macro-fiber-composite piezoelectric energy harvester for higher energy conversion from practical wideband vibrationscitations
- 2019On the effect of driving amplitude, frequency and frequency-amplitude interaction on piezoelectric generated power for MFC unimorph
- 2019An Experimental Study on Macro Piezoceramic Fiber Composites for Energy Harvestingcitations
- 2017Two-stage alkaline hydrothermal liquefaction of wood to biocrude in a continuous bench-scale systemcitations
- 2017Experimental Investigation of Zinc Antimonide Thin Film Thermoelectric Element over Wide Range of Operating Conditionscitations
- 2016Flash calcination of kaolinite rich clay and impact of process conditions on the quality of the calcines:A way to reduce CO2 footprint from cement industrycitations
- 2016Experimental Investigation of Zinc Antimonide Thin Films under Different Thermal Boundary Conditions
- 2016Power Generation by Zinc Antimonide Thin Film under Various Load Resistances at its Critical Operating Temperature
- 2016Flash calcination of kaolinite rich clay and impact of process conditions on the quality of the calcinescitations
- 2015Experimental and modeling study of flash calcination of kaolinite rich clay particles in a gas suspension calcinercitations
- 2014Simulation of flash dehydroxylation of clay particle using gPROMS:A move towards green concretecitations
- 2014Simulation of flash dehydroxylation of clay particle using gPROMScitations
Places of action
Organizations | Location | People |
---|
article
Continuous co-processing of HTL bio-oil with renewable feed for drop-in biofuels production for sustainable refinery processes
Abstract
This study demonstrates the co-hydrodeoxygenation of partially upgraded bio-oil (PUB) obtained from hydro-thermal liquefaction of pinewood, with rapeseed oil (RO) to produce bio-derived drop-in fuel. Enhanced miscibility of PUB in RO showed the high potential of HTL bio-oil for co-processing with different refinery streams in existing refineries. Co-processing experiments were conducted in a continuous unit under different processing conditions and the obtained results were compared with the hydroprocessed oils produced from the pure RO. Temperature and weight hourly space velocity (WHSV) are found to be important parameters to achieve complete deoxygenation and controlling the properties of co-processed bio-oils. Product quality analysis of co-processed bio-oils obtained under optimized conditions showed no oxygen contents and micro carbon residue but high n-paraffins. Furthermore, boiling point distribution of co-processed bio-oils was measured by SimDis, which was found analogous to boiling range of biodiesel. Fuel characteristic properties such as flash point, pour and cloud points of co-processed bio-oils were also measured and found improved compared to the properties of hydroprocessed oil obtained from RO. Therefore, this study demonstrates that HTL bio-oil can be successfully co-processed with renewable feed and petroleum refinery streams in a continuous hydroprocessing unit without any modification to reduce the environmental impacts and overcome the cost, availability and sustainability issues of oleochemical based feedstocks.