People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Zhao, Qi
University of Dundee
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2024An Optical and Metallurgical Comparison of Chrome Free and Chrome Containing Al-Si Slurry Diffusion Coatings for Gas Turbine Applications
- 2024A thermodynamically favorable route to the synthesis of nanoporous graphene templated on CaO via chemical vapor deposition
- 2023Silicon Radical-Induced CH4 Dissociation for Uniform Graphene Coating on Silica Surface
- 2019Enhanced antibacterial and anti-adhesive activities of silver–PTFE nanocomposite coating for urinary catheterscitations
- 2019Enhanced Antibacterial and Antiadhesive Activities of Silver-PTFE Nanocomposite Coating for Urinary Catheterscitations
- 2019In-vitro antibacterial and anti-encrustation performance of silver-polytetrafluoroethylene nanocomposite coated urinary catheterscitations
- 2016Tailored surface energy of stainless steel plate coupons to reduce the adhesion of aluminium silicate depositcitations
- 2010Optimisation of the properties of siloxane coatings as anti-biofouling coatings:Comparison of PACVD and hybrid PACVD-PVD coatingscitations
- 2009The potential of nano-structured silicon oxide type coatings deposited by PACVD for control of aquatic biofoulingcitations
- 2009Deposition parameters to improve the fouling-release properties of thin siloxane coatings prepared by PACVDcitations
Places of action
Organizations | Location | People |
---|
article
Tailored surface energy of stainless steel plate coupons to reduce the adhesion of aluminium silicate deposit
Abstract
Fouling in heat exchangers not only reduces heat transfer performance significantly, but also causes considerable pressure drop, resulting in higher pumping requirements. It would be much more desirable if surfaces which are inherently less prone towards fouling could be developed. In this paper, autocatalytic Nickel–Phosphorus–Polytetrafluoroethylene (Ni–P–PTFE) composite coatings and modified diamond-like carbon (DLC) coatings were applied to the coupons of the 316L stainless steel plates. The effects of surface energies of the coatings on the adhesion of aluminium silicate fouling were investigated and the best surface energy for which the fouling adhesion is lowest was obtained. The experimental results show that the coating with the most favourable surface energy reduced the adhesion of aluminium silicate deposit by 97%, compared with uncoated stainless steel plate coupons. The anti-fouling mechanism of the coatings was explained with the extended Deryagin, Landau, Verwey and Overbeek (DLVO) theory.