Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Woodward, Harrison

  • Google
  • 1
  • 2
  • 1

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Biodegradable plastics and their impact on fingermark detection methods1citations

Places of action

Chart of shared publication
Moret, Sébastien
1 / 5 shared
Chadwick, Scott
1 / 1 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Moret, Sébastien
  • Chadwick, Scott
OrganizationsLocationPeople

article

Biodegradable plastics and their impact on fingermark detection methods

  • Moret, Sébastien
  • Woodward, Harrison
  • Chadwick, Scott
Abstract

The use of plastics is extremely prevalent in society, with most individuals likely to handle several plastic items per day. It is therefore not surprising that many exhibits recovered from the scene of a crime are plastics, which are processed and examined for traces such as fingermarks. Societal trends have been pushing towards more environmentally friendly products with alternatives to traditional disposable plastics becoming increasingly available. These alternate plastics have different chemical compositions and physical properties, which may impact fingermark development for these substrates. As most detection techniques are known to be substrate-dependent, it is crucial to review current methods and procedures to examine how effective they are on new materials. The aim of this research was to assess a range of fingermark detection techniques on biodegradable plastics and provide recommendations for the preferred technique. First, the prevalence of these materials in the Australian market was evaluated. Over 40 different plastics obtained within the Sydney area were then divided into six broad categories using consumer information in combination with ATR-FTIR spectroscopy analysis. Following this, selected plastics from each category were used as substrates for the fingermark development study. In total, 6480 fingermark specimens were collected as split marks, to form 2160 fingermark comparisons. Each substrate was then developed with four fingermark detection techniques suitable for plastic substrates: cyanoacrylate (CA) fuming, vacuum metal deposition (VMD), powder suspensions (PS), and single metal deposition (SMD). SMD resulted in the most consistent development method across all tested substrates. VMD was able to successfully develop fingermarks on polyethylene-based plastics, but led to poorer results on alternative plastics, while CA fuming and PS were notably more dependent on the surface texture. This research was successful in confirming that biodegradable plastics do in fact have an impact on fingermark development techniques commonly applied on traditional plastics and recommendations have been formed to aid in operational contexts to improve the potential to recover latent fingermarks from biodegradable plastics.

Topics
  • Deposition
  • impedance spectroscopy
  • surface
  • polymer
  • chemical composition
  • texture