Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Coulston, J. L.

  • Google
  • 1
  • 3
  • 3

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022Dynamics and mechanism of the physical developer process for visualization of latent fingerprints on paper.3citations

Places of action

Chart of shared publication
Hillman, A. R.
1 / 3 shared
Bleay, Stephen
1 / 11 shared
Sears, V.
1 / 2 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Hillman, A. R.
  • Bleay, Stephen
  • Sears, V.
OrganizationsLocationPeople

article

Dynamics and mechanism of the physical developer process for visualization of latent fingerprints on paper.

  • Hillman, A. R.
  • Bleay, Stephen
  • Coulston, J. L.
  • Sears, V.
Abstract

We present a detailed mechanistic study of the PD process, focused on the nucleation and growth dynamics of silver particles on fingermarks deposited on a paper surface, from macroscopic (whole fingermark) and microscopic (particle level) perspectives. Conceptually, we separate the outcomes into aspects that precede exposure of the exhibit (relating to the reagent formulation), that relate to the development of the fingermark during immersion in the PD formulation, and that characterise the fully developed mark subsequent to immersion. Initially, dynamic light scattering shows the silver particles in solution to be relatively monodisperse, with a peak particle size of 880 nm. In the second instance, the issue is whether the particles grow to final size in solution then deposit on the surface or deposit as relatively small particles then grow on the surface. To the naked eye, silver deposition is evident after 2 min; corresponding optical profilometry images show evidence of surface-bound particles (mean diameter 2.13 µm) after 30 s. Across the development time (15 min) the particle population density (2.36 ( ± 0.52) x 10cm ), is independent of time. During this time, the mean particle diameter increases with the square root of development time to 16.09 µm. The dynamics suggest essentially instantaneous (shorter than observation time) nucleation and diffusionally controlled growth. Surface analysis (EDS) shows the expected high (low) levels of silver on ridge detail (in furrows) but no evidence of iron (from the redox component of the formulation) entrapment at any point on the surface. [Abstract copyright: Copyright © 2022 Elsevier B.V. All rights reserved.]

Topics
  • Deposition
  • density
  • impedance spectroscopy
  • surface
  • silver
  • iron
  • Energy-dispersive X-ray spectroscopy
  • dynamic light scattering
  • profilometry