Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Tavares, L.

  • Google
  • 1
  • 3
  • 99

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2021Physicochemical and microstructural properties of composite edible film obtained by complex coacervation between chitosan and whey protein isolate99citations

Places of action

Chart of shared publication
Souza, Hks
1 / 9 shared
Goncalves, Mp
1 / 11 shared
Rocha, Cmr
1 / 1 shared
Chart of publication period
2021

Co-Authors (by relevance)

  • Souza, Hks
  • Goncalves, Mp
  • Rocha, Cmr
OrganizationsLocationPeople

article

Physicochemical and microstructural properties of composite edible film obtained by complex coacervation between chitosan and whey protein isolate

  • Souza, Hks
  • Goncalves, Mp
  • Rocha, Cmr
  • Tavares, L.
Abstract

The aim of this work was to study the potential application of edible films obtained by complex coacervation promoted by the electrostatic interactions between positively charged chitosan (CH) 3% (w/w) and negatively charged whey protein isolate (WPI) 3% (w/w). Preliminary assays of turbidimetry were made in order to find the optimal CH-to-WPI mass ratio for the complex coacervation. The maximum turbidity was obtained in the CH:WPI mass ratio of 0.1:1 (w/w). The dispersions of CH/WPI (both at 3% (w/w)), WPI 5% (w/w) and CH 3% (w/w) were analyzed by Cryo-scanning electron microscopy (Cryo-SEM) and the micrograph of CH/WPI coacervate presented a more compact network structure than dispersions of individual biopolymers. The composite CH/WPI films were prepared, characterized and their performance and physicochemical properties were compared with those of CH or WPI films, in terms of water vapor permeability (WVP), mechanical properties, solubility, sorption isotherms, optical properties, scanning electron microscopy (SEM) imaging, Fourier-transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC). Results revealed that the incorporation of small amounts of CH in the matrix of WPI led to form a composite film with higher tensile strength, lower deformation, malleability, flexibility, solubility and WVP in comparison to the mono-component WPI and CH films. The CH incorporation resulted in a decrease in equilibrium moisture content of the CH/WPI film and the GuggenheimAnderson-de Boer (GAB) model of sorption data indicated isotherms of type II. All the films presented a homogeneous structure, color transparency, which is desired in food applications and packaging technology.

Topics
  • impedance spectroscopy
  • dispersion
  • scanning electron microscopy
  • strength
  • composite
  • permeability
  • differential scanning calorimetry
  • tensile strength
  • infrared spectroscopy