Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Norton-Welch, A. B.

  • Google
  • 2
  • 4
  • 48

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2021Structural characterization of interpenetrating network formation of high acyl gellan and maltodextrin gels12citations
  • 2019The effect of sugars on agar fluid gels and the stabilisation of their foams36citations

Places of action

Chart of shared publication
Mills, Tom
2 / 11 shared
Kanyuck, K. M.
1 / 1 shared
Norton, I. T.
2 / 5 shared
Ellis, A. L.
1 / 2 shared
Chart of publication period
2021
2019

Co-Authors (by relevance)

  • Mills, Tom
  • Kanyuck, K. M.
  • Norton, I. T.
  • Ellis, A. L.
OrganizationsLocationPeople

article

The effect of sugars on agar fluid gels and the stabilisation of their foams

  • Mills, Tom
  • Norton-Welch, A. B.
  • Norton, I. T.
  • Ellis, A. L.
Abstract

<p>The rising demand to reduce sugar in foods has resulted in the need to better understand its structuring properties and contribution to the overall microstructure of products. The effect of sugars on the microstructure of agar fluid gels and their novel foams, including stability, has therefore been studied. Gelation kinetics and material properties of agar fluid gels with added glucose, fructose and sucrose have been explored. The addition of sugar did not notably affect the temperature of ordering during gelation however, it did cause a reduction in fluid gel particle size through changes in solution viscosity during gelation. At high concentrations of sugar (above 50%), the conversion of an overall brittle agar gel network to a more rubbery-like structure was inferred through rheology, as the glass transition of sugar was approached. Below 50% sugar, shear viscosity and G′ increased with concentration due to an increase in particle gel strength (observed through initial Young's modulus). These changes in material properties were overall observed to be independent of sugar type. All systems showed good foaming properties where foam half-life increased with sugar concentration as a result of increased fluid gel yield stress. In order to increase understanding of the foam stability mechanism, fluid gel particle size was altered. When the continuous phase consisted of larger particles, the initial liquid drainage was considerably reduced as particles were more effective at accumulating in the foam channels preventing the flow of the bulk phase. However, foam half-life was ultimately dependent on fluid gel yield stress. This research has provided fundamental understanding of the effect of sugars on the microstructure of agar fluid gels and their use in foam stabilisation, allowing the development of an approach that can potentially be tailored to specific product requirements.</p>

Topics
  • microstructure
  • phase
  • glass
  • glass
  • strength
  • viscosity
  • gelation