Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Bharadwaj, Lalit M.

  • Google
  • 1
  • 4
  • 55

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2020Electro-deposited nano-webbed structures based on polyaniline/multi walled carbon nanotubes for enzymatic detection of organophosphates55citations

Places of action

Chart of shared publication
Wadhwa, Shika
1 / 1 shared
Krishnamurthy, Professor Satheesh
1 / 24 shared
John, Alishba T.
1 / 1 shared
Nagabooshanam, Shalini
1 / 2 shared
Chart of publication period
2020

Co-Authors (by relevance)

  • Wadhwa, Shika
  • Krishnamurthy, Professor Satheesh
  • John, Alishba T.
  • Nagabooshanam, Shalini
OrganizationsLocationPeople

article

Electro-deposited nano-webbed structures based on polyaniline/multi walled carbon nanotubes for enzymatic detection of organophosphates

  • Wadhwa, Shika
  • Bharadwaj, Lalit M.
  • Krishnamurthy, Professor Satheesh
  • John, Alishba T.
  • Nagabooshanam, Shalini
Abstract

We report the development of an ultrasensitive electrochemical sensor using polyaniline (PANi) and carboxyl functionalized multi-walled carbon nanotubes (fMWCNT) for the detection of organophosphates (OPs) in real samples. The sensor was tested in the linear concentration range of 10 ng/L to 120 ng/L. The limit of detection (LoD) was found to be 8.8 ng/L with sensitivity 0.41 mA/ng/L/cm2 for chlorpyrifos (CPF); and 10.2 ng/L with sensitivity 0.58 mA/ng/L/cm2 for methyl parathion (MP). The vegetable samples (cucumber) were also tested. The average % recovery for CPF and MP were found to be 98.05% and 96.63% respectively. The developed sensor showed stability for a period of 30 days. The interference of the sensor was studied with heavy metals (cadmium (Cd), chromium (Cr), lead (Pb), arsenic (As)) which was found to be < 10%. The developed sensor will play a major role in real-time monitoring of food products, leading to food safety.

Topics
  • Carbon
  • chromium
  • nanotube
  • Arsenic
  • Cadmium