Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Rosenmai, Anna Kjerstine

  • Google
  • 3
  • 7
  • 57

Technical University of Denmark

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2020Migration studies and toxicity evaluation of cyclic polyesters oligomers from food packaging adhesives57citations
  • 2018PFAS in paper and board for food contact - options for risk management of poly- and perfluorinated substancescitations
  • 2017PFAS in paper and board for food contact - options for risk management of poly- and perfluorinated substancescitations

Places of action

Chart of shared publication
Ubeda, Sara
1 / 1 shared
Aznar, Margarita
1 / 2 shared
Vinggaard, Anne Marie
1 / 6 shared
Nerín, Cristina
1 / 5 shared
Taxvig, Camilla
2 / 5 shared
Trier, Xenia
2 / 4 shared
Pedersen, Gitte Alsing
2 / 2 shared
Chart of publication period
2020
2018
2017

Co-Authors (by relevance)

  • Ubeda, Sara
  • Aznar, Margarita
  • Vinggaard, Anne Marie
  • Nerín, Cristina
  • Taxvig, Camilla
  • Trier, Xenia
  • Pedersen, Gitte Alsing
OrganizationsLocationPeople

article

Migration studies and toxicity evaluation of cyclic polyesters oligomers from food packaging adhesives

  • Ubeda, Sara
  • Aznar, Margarita
  • Vinggaard, Anne Marie
  • Nerín, Cristina
  • Rosenmai, Anna Kjerstine
Abstract

Multilayer materials used in food packaging are commonly manufactured with a polyurethane adhesive layer in its structure that may contain cyclic esters oligomers as potential migrants. However, little is known about their toxicity. In this work, two cyclic esters of polyurethane are evaluated in migration from 20 multilayer packaging samples. They were composed by adipic acid (AA), diethylene glycol (DEG) and isophthalic acid (IPA) and their structure was AA-DEG and AA-DEG-IPA-DEG. The concentration of these compounds in migration exceeded the maximum level established by Regulation EU/10/2011 (10 ng g<sup>−1</sup>). Bioaccessibility of both compounds was evaluated by studying gastric and intestinal digestion. The studies showed that the concentration of the compounds decreased during digestion and that their hydrolysed molecules increased. Furthermore, endocrine activity in vitro assays were performed. A weak androgen receptor antagonism was identified, whereas no arylhydrocarbon receptor activity or binding to the thyroid hormone transport protein was found.

Topics
  • impedance spectroscopy
  • compound
  • toxicity
  • ester