People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Mazánek, Vlastimil
University of Chemistry and Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (9/9 displayed)
- 2024Electrochemical Intercalation and Exfoliation of CrSBr into Ferromagnetic Fibers and Nanoribbonscitations
- 2023Electrochemical Decalcification-Exfoliation of Two-Dimensional Siligene, SixGey: Material Characterization and Perspectives for Lithium-Ion Storagecitations
- 2022Two-dimensional layered chromium selenophosphate: advanced high-performance anode material for lithium-ion batteriescitations
- 2022Exfoliated Fe3GeTe2 and Ni3GeTe2 materials as water splitting electrocatalystscitations
- 2022Unraveling the Mechanism of the Persistent Photoconductivity in InSe and its Doped Counterpartscitations
- 2022All inkjet-printed electronics based on electrochemically exfoliated two-dimensional metal, semiconductor, and dielectriccitations
- 2022Universal Capacitance Boost—Smart Surface Nanoengineering by Zwitterionic Molecules for 2D MXene Supercapacitorcitations
- 2021Cobalt Phosphorous Trisulfide as a High-Performance Electrocatalyst for the Oxygen Evolution Reactioncitations
- 2021Functionalized Germanene-Based Nanomaterials for the Detection of Single Nucleotide Polymorphismcitations
Places of action
Organizations | Location | People |
---|
article
Exfoliated Fe3GeTe2 and Ni3GeTe2 materials as water splitting electrocatalysts
Abstract
Two dimensional layered metallic Fe3GeTe2 (FGT) and Ni3GeTe2 (NGT) are expected to be water- and air-stable. Very recently, it has been predicted that FGT possesses exposed active sites on its basal plane which can provide excellent oxygen evolution reaction (OER) activity, with a low OER overpotential of 0.30 V, following surface hydroxyl pathways. NGT has a similar chemical and crystalline structure; however, its performance as an electrochemical catalyst is not yet reported. Thus, FGT and NGT were synthesized by solid-state reaction and, for the first time, exfoliated by shear force. The prepared materials were investigated as electrocatalysts, thus comparing the catalytic performance of MGT materials, bulk and exfoliated counterparts, towards the hydrogen evolution reaction (HER) and oxygen-involving reactions (OER and the oxygen reduction reaction). Ferromagnetic transitions and Curie-Weiss contributions were noticed in FGT and NGT, respectively, in the analysis of their temperature dependent magnetic susceptibility. For the HER, exfoliated FGT has superior catalytic activity in alkaline media and for OER, improved catalytic activity was attained by using more conductive supports as compared with the glassy carbon substrate. FGT achieved the best OER performance, in agreement with the theoretically predicted value following the classical pathway in alkaline media.