People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Lauermannová, Anna-Marie
University of Chemistry and Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (24/24 displayed)
- 2024Impact of nano-dopants on the mechanical and physical properties of magnesium oxychloride cement composites – Experimental assessmentcitations
- 2023Utilization of waste carbon spheres in magnesium oxychloride cementcitations
- 2023Case study on nanoscale modification of MOC-based construction composites: Introduction of molybdenum disulfidecitations
- 2023Thermally treated coal mining waste as a supplementary cementitious material – Case study from Bogdanka mine, Polandcitations
- 2023Utilization of extracted carbonaceous shale waste in eco-friendly cementitious blendscitations
- 2023Magnesium oxychloride cement-based composites for latent heat storage: The effect of the introduction of multi-walled carbon nanotubescitations
- 2023Case study on MOC composites enriched by foamed glass and ground glass waste: Experimental assessment of material properties and performancecitations
- 2023MOC Composites for Constructions: Improvement of Water Resistance by Addition of Nanodopants and Polyphenolcitations
- 2023Lactose/tannin-based calcium aluminate coatings for carbon-bonded alumina foam filters: A novel approach in environment-friendly steel melt filtrationcitations
- 2023MgO–C refractories based on refractory recyclates and environmentally friendly binderscitations
- 2022Ultra-high strength multicomponent composites based on reactive magnesia: Tailoring of material properties by addition of 1D and 2D carbon nanoadditivescitations
- 2022Magnesium oxychloride cement with phase change material: Novel environmentally-friendly composites for heat storagecitations
- 2022Assessment of wood chips ash as efficient admixture in foamed glass-MOC compositescitations
- 2022Co-Doped Magnesium Oxychloride Composites with Unique Flexural Strength for Construction Usecitations
- 2022Solid-liquid equilibria in the Bi-Ca-Co-O system
- 2022Graphene- and Graphite Oxide-Reinforced Magnesium Oxychloride Cement Composites for the Construction Usecitations
- 2021Regolith-based magnesium oxychloride composites doped by graphene: Novel high-performance building materials for lunar constructionscitations
- 2021Graphene- And graphite oxide-reinforced magnesium oxychloride cement composites for the construction usecitations
- 2021Magnesium oxychloride-graphene composites: Towards high strength and water resistant materials for construction industrycitations
- 2021The influence of graphene specific surface on material properties of MOC-based composites for construction usecitations
- 2020Synthesis, structure, and thermal stability of magnesium oxychloride 5Mg(OH)2·MgCl2·8H2Ocitations
- 2020Magnesium Oxybromides MOB-318 and MOB-518: Brominated Analogues of Magnesium Oxychloridescitations
- 2020Towards novel building materials: High-strength nanocomposites based on graphene, graphite oxide and magnesium oxychloridecitations
- 2020Low-Carbon Composite Based on MOC, Silica Sand and Ground Porcelain Insulator Wastecitations
Places of action
Organizations | Location | People |
---|
article
Magnesium oxychloride-graphene composites: Towards high strength and water resistant materials for construction industry
Abstract
This paper deals with research concerning the graphene-doped construction materials, namely with the optimization of the ideal content of the nanoadditive in the final composite. This research was conducted building on the previous studies on use of graphene in magnesium oxychloride cement (MOC). The evaluation of the effect of the graphene nanoplatelets based on their content was performed using various analytical methods as well as mechanical tests. Among the used methods are XRF, SEM, EDS, HR-TEM, XRD and OM. After 28 days of air curing, the mechanical, macro- and micro-structural parameters were studied. One of the main characteristics of the materials was their porosity, which was thoroughly studied in order to determine the influence of the graphene on its drop. This parameter is very important for the MOC-based materials, hence it is directly connected to their resistance to water. The compressive strength of the sample containing 1 wt% of graphene reached value of 99.7 MPa. This sample has shown a massive increase in both compressive (26.8 %) and flexural strength (14.9 %) as well as in the modulus of elasticity (73.1 %) in comparison with the reference sample which did not contain any additives. The developed composite materials show a promising route in the controlled improvement of reactive magnesia-based construction materials properties using carbon-based nanoadditives.