Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Bourbigot, S.

  • Google
  • 16
  • 51
  • 1309

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (16/16 displayed)

  • 2017Latest developments in scale reduction for fire testingcitations
  • 2016Phosphorylation of lignin to flame retard acrylonitrile butadiene styrene (ABS)129citations
  • 2015Intumescence: Tradition versus novelty. A comprehensive review486citations
  • 2015Poly(3-hydroxybutyrate-co-4-hydroxybutyrate) based nanocomposites: influence of the microstructure on the barrier properties21citations
  • 2014Towards scalable production of polyamide 12/halloysite nanocomposites via water-assisted extrusion: mechanical modeling, thermal and fire properties39citations
  • 2014Elaboration of poly(lactic acid)/halloysite nanocomposites by means of water assisted extrusion: structure, mechanical properties and fire performance61citations
  • 2014Microstructure and barrier properties of PHBV/organoclays bionanocomposites64citations
  • 2013Highly loaded nanocomposite films as fire protective coating for polymeric substrates12citations
  • 2013Thermal and flammability properties of polyethersulfone/halloysite nanocomposites prepared by melt compounding60citations
  • 2012Kinetics of the thermal and thermo-oxidative degradation of polypropylene/halloysite nanocomposites33citations
  • 2012Effect of Highly Exfoliated and Oriented Organoclays on the Barrier Properties of Polyamide 6 Based Nanocomposites66citations
  • 2011Water-assisted extrusion as a novel processing route to prepare polypropylene/ halloysite nanotube nanocomposites: Structure and properties111citations
  • 2009Effects of nanoclay and fire retardants on fire retardancy of a polymer blend of EVA and LDPE83citations
  • 2009Supercritical CO2 as an efficient medium for layered silicate organomodification: preparation of thermally stable organoclays and dispersion in polyamide 625citations
  • 2008Characterisation of the dispersion in polymer flame retarded nanocomposites70citations
  • 2008Crossed characterisation of polymer-layered silicate (PLS) nanocomposite morphology: TEM, X-ray diffraction, rheology and solid-state nuclear magnetic resonance measurements49citations

Places of action

Chart of shared publication
Jimenez, M.
1 / 3 shared
Tranchard, P.
1 / 1 shared
Sarazin, J.
1 / 1 shared
Bachelet, P.
1 / 3 shared
Samyn, F.
4 / 4 shared
Duquesne, S.
1 / 4 shared
Naik, A.
1 / 1 shared
Fontaine, G.
1 / 5 shared
Wittemann, M.
1 / 1 shared
Bellayer, S.
3 / 9 shared
Meub, M.
1 / 1 shared
Klein, Roland
1 / 2 shared
Prieur, B.
1 / 1 shared
Han, Z.
1 / 5 shared
Alongi, J.
1 / 19 shared
Dargent, E.
2 / 6 shared
Follain, N.
1 / 3 shared
Marais, S.
3 / 7 shared
Lebrun, Laurent
2 / 13 shared
Soulestin, J.
3 / 7 shared
Crétois, R.
2 / 3 shared
Bailly, Christian
5 / 58 shared
Sclavons, Michel
6 / 29 shared
Lecouvet, Benoãt
6 / 8 shared
Sallem, Naãma
1 / 3 shared
Stoclet, G.
1 / 12 shared
Devaux, Jacques
2 / 36 shared
Van Velthem, Pascal
1 / 9 shared
Boborodea, Adrian
1 / 2 shared
Follain, Nadège
2 / 14 shared
Tenn, N.
1 / 1 shared
Alix, Sébastien
1 / 8 shared
Alexandre, B.
1 / 2 shared
Castrovinci, A.
3 / 3 shared
Hereid, J.
1 / 1 shared
Camino, G.
2 / 17 shared
Bakirtzis, D.
1 / 1 shared
Hagen, M.
1 / 1 shared
Fina, A.
1 / 15 shared
Delichatsios, Michael
1 / 4 shared
Zhang, Jianping
1 / 8 shared
Alexandre, Michaël
1 / 49 shared
Calberg, Cédric
1 / 29 shared
Detrembleur, Christophe
1 / 108 shared
Jérôme, Christine
1 / 126 shared
Naveau, Elodie
1 / 7 shared
Fina, Alberto
2 / 59 shared
Jama, C.
2 / 9 shared
Nazare, S.
2 / 2 shared
Hull, R.
2 / 2 shared
Camino, Giovanni
1 / 30 shared
Chart of publication period
2017
2016
2015
2014
2013
2012
2011
2009
2008

Co-Authors (by relevance)

  • Jimenez, M.
  • Tranchard, P.
  • Sarazin, J.
  • Bachelet, P.
  • Samyn, F.
  • Duquesne, S.
  • Naik, A.
  • Fontaine, G.
  • Wittemann, M.
  • Bellayer, S.
  • Meub, M.
  • Klein, Roland
  • Prieur, B.
  • Han, Z.
  • Alongi, J.
  • Dargent, E.
  • Follain, N.
  • Marais, S.
  • Lebrun, Laurent
  • Soulestin, J.
  • Crétois, R.
  • Bailly, Christian
  • Sclavons, Michel
  • Lecouvet, Benoãt
  • Sallem, Naãma
  • Stoclet, G.
  • Devaux, Jacques
  • Van Velthem, Pascal
  • Boborodea, Adrian
  • Follain, Nadège
  • Tenn, N.
  • Alix, Sébastien
  • Alexandre, B.
  • Castrovinci, A.
  • Hereid, J.
  • Camino, G.
  • Bakirtzis, D.
  • Hagen, M.
  • Fina, A.
  • Delichatsios, Michael
  • Zhang, Jianping
  • Alexandre, Michaël
  • Calberg, Cédric
  • Detrembleur, Christophe
  • Jérôme, Christine
  • Naveau, Elodie
  • Fina, Alberto
  • Jama, C.
  • Nazare, S.
  • Hull, R.
  • Camino, Giovanni
OrganizationsLocationPeople

article

Effects of nanoclay and fire retardants on fire retardancy of a polymer blend of EVA and LDPE

  • Castrovinci, A.
  • Bourbigot, S.
  • Hereid, J.
  • Camino, G.
  • Bakirtzis, D.
  • Hagen, M.
  • Fina, A.
  • Samyn, F.
  • Delichatsios, Michael
  • Zhang, Jianping
Abstract

The effects of nanoclay (organoclay) and fire retardants (aluminium tri-hydroxide and magnesium hydroxide) on the fire retardancy of a polymer blend of ethylene-vinyl acetate (EVA) and low-density polyethylene (LDPE) were assessed using thermogravimetric analysis (TGA) and the cone calorimeter. TGA measurements were conducted in nitrogen and air atmospheres at different heating rates (1-20 degrees C/min), whilst in the cone calorimeter square samples were tested under various external heat fluxes (15-60kW/m(2)). The TGA results indicate that the nanoclay (NC) alone has little effect on the degradation of the polymer blend, whereas aluminium tri-hydroxide (ATH) and magnesium hydroxide (MH), used as fire retardants (FRs), generally decrease the onset degradation temperature and also reduce the peak mass loss rate. However, it was found in the cone calorimeter that, though having negligible effect on ignition, the nanoclay reduces the heat release rate (HRR), and increases smoke and CO yields. In comparison, FRs (ATH or MH) were found to delay ignition owing to loss of water at lower temperatures, reduce the HRR, and have similar smoke and CO yields compared to the polymer blend. The reduced HRRs for both the nanoclay and FRs can be attributed to the formation of a surface layer (a nano layer for nanoclay and a ceramic-like layer of Al2O3/MgO for FRs), which acts as mass and heat barriers to the unpyrolysed material underneath. The global effect of the surface layer for the polymer blend nanocomposite was examined using a previously developed numerical model, and a methodology for predicting the mass loss rate was subsequently developed and validated. (c) 2008 Elsevier Ltd. All rights reserved.

Topics
  • nanocomposite
  • density
  • surface
  • Magnesium
  • Magnesium
  • aluminium
  • Nitrogen
  • thermogravimetry
  • ceramic
  • polymer blend
  • degradation temperature