Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Adeniran, Olusanmi

  • Google
  • 2
  • 3
  • 40

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2023Finite element model of fiber volume effect on the mechanical performance of additively manufactured carbon fiber reinforced plastic composites7citations
  • 2022Material design factors in the additive manufacturing of Carbon Fiber Reinforced Plastic Composites33citations

Places of action

Chart of shared publication
Cong, Weilong
2 / 2 shared
Oluwole, Oluleke
1 / 1 shared
Aremu, Adedeji
2 / 12 shared
Chart of publication period
2023
2022

Co-Authors (by relevance)

  • Cong, Weilong
  • Oluwole, Oluleke
  • Aremu, Adedeji
OrganizationsLocationPeople

article

Finite element model of fiber volume effect on the mechanical performance of additively manufactured carbon fiber reinforced plastic composites

  • Cong, Weilong
  • Oluwole, Oluleke
  • Adeniran, Olusanmi
  • Aremu, Adedeji
Abstract

Advancements in additively manufactured (AM) carbon-fiber-reinforced-plastic (CFRP) composites for structural applications require reliable tools to predict mechanical performance. Already, the composites are finding applications in wind turbines, Unmanned Aerial Vehicles (UAVs), space applications, etc., and are promising for more emerging needs. Fiber volume plays a huge role in influencing the mechanical performance of the composites. However, more understanding of their effects are still needed to better ascertain material performance, which can be achieved by applying simulation modeling. This study developed a micromechanical model from Python scripts for Abaqus command line within computer-aided engineering (CAE) environment to predict the <br/>composites’ structural stability and mechanical performance. The verification of the finite element model by experimental testing showed both the simulation and experimental results to match within an acceptable range. Tensile modulus increased with fiber volume while compressive modulus shows some decreased properties with fiber addition irrespective of fiber content for up to 25% CF volume. The overall results show a possible trade-off between the tensile and compressive properties of the composite, which should be carefully considered in material design for various AM applications.

Topics
  • polymer
  • Carbon
  • simulation
  • composite
  • additive manufacturing