Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Darabi, R.

  • Google
  • 2
  • 7
  • 51

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2022Thermal study of a cladding layer of Inconel 625 in Directed Energy Deposition (DED) process using a phase-field model16citations
  • 2020Fracture analysis in directed energy deposition (DED) manufactured 316L stainless steel using a phase-field approach35citations

Places of action

Chart of shared publication
Ferreira, Antonio
1 / 6 shared
De Sa, Jc
2 / 9 shared
Reis, A.
1 / 20 shared
Azinpour, E.
2 / 3 shared
Santos, A.
1 / 12 shared
Hodek, J.
1 / 1 shared
Dzugan, J.
1 / 2 shared
Chart of publication period
2022
2020

Co-Authors (by relevance)

  • Ferreira, Antonio
  • De Sa, Jc
  • Reis, A.
  • Azinpour, E.
  • Santos, A.
  • Hodek, J.
  • Dzugan, J.
OrganizationsLocationPeople

article

Fracture analysis in directed energy deposition (DED) manufactured 316L stainless steel using a phase-field approach

  • Santos, A.
  • Hodek, J.
  • De Sa, Jc
  • Darabi, R.
  • Dzugan, J.
  • Azinpour, E.
Abstract

Experimental and numerical study regarding fracture in laser-processed steel components is addressed in the present work. Samples of stainless steel (SS) 316L were obtained by an additive manufacturing process, the directed energy deposition (DED), using different deposition orientations, and tested experimentally until fracture. Microstructural investigations, prior and after fracture, were performed by observing micro-cavities and porosities and fractographic images of the fracture surfaces. A numerical approach based on the phase-field diffusive model was utilised in a micromechanical pressure-dependent plasticity context using Rousselier damage criterion and implemented within the finite element framework. The ability to predict the material failure induced by the porosity evolution through the micro-void growth mechanism is considered as a key feature of the proposed material model. The performance of the numerical model is assessed via material deformation analysis, including initiation and propagation of cracks, which are found to be in good agreement with the experimental and fractographic observations from the fabricated tensile test samples.

Topics
  • Deposition
  • impedance spectroscopy
  • surface
  • stainless steel
  • phase
  • crack
  • plasticity
  • void
  • porosity
  • directed energy deposition