Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Théato, Patrick

  • Google
  • 12
  • 47
  • 107

Karlsruhe Institute of Technology

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (12/12 displayed)

  • 2024Synthesis of Polyimide-PEO Copolymers: Toward thermally stable solid polymer electrolytes for Lithium-Metal batteries4citations
  • 2024Degradation of Styrene-Poly(ethylene oxide)-Based Block Copolymer Electrolytes at the Na and K Negative Electrode Studied by Microcalorimetry and Impedance Spectroscopy2citations
  • 2023Magnesium Polymer Electrolytes Based on the Polycarbonate Poly(2-butyl-2-ethyltrimethylene-carbonate)citations
  • 2023Improved Route to Linear Triblock Copolymers by Coupling with Glycidyl Ether-Activated Poly(ethylene oxide) Chains2citations
  • 2023Photoresponsive Spiropyran and DEGMA‐Based Copolymers with Photo‐Switchable Glass Transition Temperatures6citations
  • 2023Poly(ethylene oxide)-grafted Polycarbonates as Solvent-free Polymer Electrolytes for Lithium-Metal Batteriescitations
  • 2022Inverse Vulcanization of Norbornenylsilanes: Soluble Polymers with Controllable Molecular Properties via Siloxane Bonds25citations
  • 2022Synthesis and Characterization of Novel Isosorbide‐Based Polyester Derivatives Decorated with α ‐Acyloxy Amides3citations
  • 2022Synthesizing Polyethylene from Polyacrylates: A Decarboxylation Approach22citations
  • 2021Synthesis and Post-Polymerization Modification of Poly(N-(4-Vinylphenyl)Sulfonamide)s5citations
  • 2020The toolbox of porous anodic aluminum oxide–based nanocomposites: from preparation to application23citations
  • 2020A CO$_{2}$-gated anodic aluminum oxide based nanocomposite membrane for de-emulsification15citations

Places of action

Chart of shared publication
Voll, Dominik
2 / 4 shared
Kolesnikov, Timofey I.
1 / 1 shared
Jeschull, Fabian
2 / 5 shared
Rauska, Ulf-Christian
1 / 1 shared
Khudyshkina, Anna
1 / 1 shared
Xing, Silin
1 / 1 shared
Butzelaar, Andreas J.
2 / 2 shared
Tübke, Jens
1 / 9 shared
Hirschberg, Valerian
1 / 16 shared
Sundermann, David A.
1 / 1 shared
Park, Bumjun
1 / 2 shared
Schaefer, Jennifer L.
1 / 4 shared
Siozios, Vassilios
1 / 1 shared
Krämer, Susanna
1 / 2 shared
Krause, Daniel T.
1 / 1 shared
Wiemhöfer, Hans-Dieter
1 / 2 shared
Winter, Martin
1 / 25 shared
Grünebaum, Mariano
1 / 1 shared
Förster, Beate
1 / 1 shared
Dulle, Martin
1 / 6 shared
Förster, Stephan
1 / 11 shared
Mayer, Joachim
1 / 30 shared
Akae, Yosuke
1 / 2 shared
Pruthi, Vaishali
1 / 1 shared
Subarew, Marvin
1 / 2 shared
Meier, Michael
1 / 3 shared
Hoffmann, M.
1 / 28 shared
Falkenstein, P.
1 / 1 shared
Rutschmann, M.
1 / 1 shared
Scheiger, V. W.
1 / 1 shared
Urbschat, K.
1 / 1 shared
Scheiger, J. M.
1 / 2 shared
Sengpiel, T.
1 / 1 shared
Matysik, J.
1 / 1 shared
Levkin, Pavel A.
1 / 5 shared
Grimm, A.
1 / 3 shared
Wilhelm, M.
1 / 11 shared
Döpping, Daniel
1 / 1 shared
Rotter, Nicole
1 / 1 shared
Llevot, Audrey
1 / 2 shared
Mutlu, Hatice
3 / 10 shared
Kern, Johann
1 / 1 shared
Frech, Stefan
1 / 1 shared
Molle, Edgar
1 / 1 shared
Huang, Xia
1 / 1 shared
Huang, X.
1 / 13 shared
Mutlu, H.
1 / 2 shared
Chart of publication period
2024
2023
2022
2021
2020

Co-Authors (by relevance)

  • Voll, Dominik
  • Kolesnikov, Timofey I.
  • Jeschull, Fabian
  • Rauska, Ulf-Christian
  • Khudyshkina, Anna
  • Xing, Silin
  • Butzelaar, Andreas J.
  • Tübke, Jens
  • Hirschberg, Valerian
  • Sundermann, David A.
  • Park, Bumjun
  • Schaefer, Jennifer L.
  • Siozios, Vassilios
  • Krämer, Susanna
  • Krause, Daniel T.
  • Wiemhöfer, Hans-Dieter
  • Winter, Martin
  • Grünebaum, Mariano
  • Förster, Beate
  • Dulle, Martin
  • Förster, Stephan
  • Mayer, Joachim
  • Akae, Yosuke
  • Pruthi, Vaishali
  • Subarew, Marvin
  • Meier, Michael
  • Hoffmann, M.
  • Falkenstein, P.
  • Rutschmann, M.
  • Scheiger, V. W.
  • Urbschat, K.
  • Scheiger, J. M.
  • Sengpiel, T.
  • Matysik, J.
  • Levkin, Pavel A.
  • Grimm, A.
  • Wilhelm, M.
  • Döpping, Daniel
  • Rotter, Nicole
  • Llevot, Audrey
  • Mutlu, Hatice
  • Kern, Johann
  • Frech, Stefan
  • Molle, Edgar
  • Huang, Xia
  • Huang, X.
  • Mutlu, H.
OrganizationsLocationPeople

article

Synthesis of Polyimide-PEO Copolymers: Toward thermally stable solid polymer electrolytes for Lithium-Metal batteries

  • Voll, Dominik
  • Kolesnikov, Timofey I.
  • Jeschull, Fabian
  • Théato, Patrick
Abstract

The rapid pace of technological advancement in field of electric vehicles and need in sustainable energy sources calls for new, high-performance energy storage technologies. Lithium metal batteries (LMBs) based on solid polymer electrolyte represent a promising battery technology to increase energy density of conventional batteries while enhancing safety, eliminating dendrite formation, and providing mechanical flexibility. In this study, we developed novel polyimide-poly(ethylene oxide) (PI-PEO) copolymers and employed them as solid polymer electrolytes for LMBs. Copolymers with 5, 15, and 30 mol% of PEO-containing diamine were synthesized by reacting with aromatic dianhydride and diamine, using a facile and eco-friendly method in a benzoic acid melt. Chemical structures were confirmed using NMR and IR spectroscopy. Glass transition temperatures varied from 24 °C to 195 °C, increasing with a decrease in the PEO/PI moiety ratio. All copolymers demonstrated good thermal stability up to T$_{5\%}$ > 345 °C with a two-step degradation and favorable mechanical properties below the glass transition temperature, as observed by DMA measurements. Solid polymer electrolytes with 70 wt% of LiTFSI exhibited an ionic conductivity of 1.4 × 10$^{−4}$ S cm$^{−1}$ at 70 °C, with a transference number of 0.7. The polymer electrolyte exhibited non-flammable properties and the potential for utilization in lithium metal batteries, indicating the promising application of these new polymers for high-safety battery systems.

Topics
  • density
  • energy density
  • melt
  • glass
  • glass
  • glass transition temperature
  • Lithium
  • copolymer
  • Nuclear Magnetic Resonance spectroscopy
  • infrared spectroscopy