Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Hosseini, Hadi

  • Google
  • 1
  • 3
  • 31

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2021Display of hidden properties of flexible aerogel based on bacterial cellulose/polyaniline nanocomposites with helping of multiscale modeling31citations

Places of action

Chart of shared publication
Wurm, Frederik R.
1 / 42 shared
Mousavi, Seyyed Mohammad
1 / 1 shared
Goodarzi, Vahabodin
1 / 7 shared
Chart of publication period
2021

Co-Authors (by relevance)

  • Wurm, Frederik R.
  • Mousavi, Seyyed Mohammad
  • Goodarzi, Vahabodin
OrganizationsLocationPeople

article

Display of hidden properties of flexible aerogel based on bacterial cellulose/polyaniline nanocomposites with helping of multiscale modeling

  • Wurm, Frederik R.
  • Mousavi, Seyyed Mohammad
  • Hosseini, Hadi
  • Goodarzi, Vahabodin
Abstract

Tuning the synthesis conditions of polyaniline (PANI) such as aniline monomer’s protonation states and adding surfactants into polymerization mixture or even the existence of bacterial cellulose (BC) had a substantial influence on the final properties. To explore the relationship between components presented in the polymerization mixture, simulation tools (molecular dynamics (MD)/Monte Carlo (MC)/Density functional theory (DFT)) can be used. Herein, nanocomposite aerogels of BC/PANI were fabricated in the presence of anionic surfactants; sodium dodecyl benzene sulfonate (SDBS) or sodium dodecyl sulfonate (SDS) at two different concentrations (0.05 M and 1 M) of HCl solution. Two types of aniline monomers were considered in the polymerization mixture based on HCl solution’s concentrations including neutral and protonated aniline in 0.05 and 1 M, respectively. Various morphologies from nanobelts (with a width of 100–500 nm) and polyhedrons (with a thickness of 100–700 nm) in 0.05 M of acid solution in the presence of SDBS or SDS, respectively, were detected. Based on DFT computations it was found that electrostatic interactions and the formation of hydrogen bonds play a vital role in the interfacial interaction mechanism between both surfactants (SDBS and SDS) and different protonation forms of aniline monomers. Nevertheless, in the case of SDBS and aniline monomers (in both 0.05 and 1 M of HCl solutions), an excess interaction mechanism, namely π-π stacking, was observed, which enhanced the interaction between them and confirmed by experimental results. Therefore, the highest conductivity of 0.8 S/cm was obtained for the BC/PANI prepared with SDBS in 1 M of HCl solution. Besides, the smallest energy gap of 2.74 eV was predicted from DFT calculations for this sample that further confirmed its high electrical properties and smaller band gap at 3 nm, which was also confirmed by MD and MC.

Topics
  • nanocomposite
  • density
  • theory
  • simulation
  • molecular dynamics
  • Sodium
  • Hydrogen
  • density functional theory
  • interfacial
  • cellulose
  • surfactant