Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Santos, João Henrique Zimnoch Dos

  • Google
  • 2
  • 9
  • 18

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2019Corrigendum tocitations
  • 2018Synthesis of polyethylene/silica-silver nanocomposites with antibacterial properties by in situ polymerization18citations

Places of action

Chart of shared publication
Pavoski, Giovani
2 / 2 shared
Souza, Gustavo
2 / 2 shared
Kalikoski, Renan
2 / 2 shared
Markeb, Ahmad Abo
2 / 7 shared
Dellerba, Ignacio
2 / 2 shared
Galland, Griselda Barrera
2 / 2 shared
Font, Xavier
2 / 10 shared
Santos, Cristiane Dos
2 / 2 shared
Brum, Luiz Fernando Wentz
2 / 2 shared
Chart of publication period
2019
2018

Co-Authors (by relevance)

  • Pavoski, Giovani
  • Souza, Gustavo
  • Kalikoski, Renan
  • Markeb, Ahmad Abo
  • Dellerba, Ignacio
  • Galland, Griselda Barrera
  • Font, Xavier
  • Santos, Cristiane Dos
  • Brum, Luiz Fernando Wentz
OrganizationsLocationPeople

article

Synthesis of polyethylene/silica-silver nanocomposites with antibacterial properties by in situ polymerization

  • Pavoski, Giovani
  • Souza, Gustavo
  • Kalikoski, Renan
  • Markeb, Ahmad Abo
  • Dellerba, Ignacio
  • Galland, Griselda Barrera
  • Font, Xavier
  • Santos, Cristiane Dos
  • Brum, Luiz Fernando Wentz
  • Santos, João Henrique Zimnoch Dos
Abstract

© 2018 Elsevier Ltd Synthesis of polyethylene/silica-silver nanocomposites (PE/SiAg) by in situ polymerization with supported and non-supported catalysts was achieved using the Cp2ZrCl2/MAO catalytic system. Silica-silver nanoparticles (SiAg) were synthesized via two routes (acidic and basic) and characterized to determine the silver content, morphology, and size. The basic route resulted in particles with a lower concentration of silver and with smaller diameters. The polymerizations of ethylene in the presence of the fillers produced high yields of nanocomposites. The catalyst support in SiAg was efficient, although the percentage of Zr effectively immobilized was very low. Polyethylene melting and crystallization temperatures did not change significantly with the addition of the filler. SEM images showed differences in the morphologies between the supported and non-supported catalysis, and between the acidic and basic conditions for SiAg preparation. Two different tests were performed and showed that the nanocomposites inhibited the proliferation of bacteria in contact with the films.

Topics
  • nanoparticle
  • nanocomposite
  • silver
  • scanning electron microscopy
  • crystallization
  • crystallization temperature