People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Clark, James Hanley
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2020Deep Eutectic Solvents Based on Natural Ascorbic Acid Analogues and Choline Chloridecitations
- 2019Fabrication of PES/PVP Water Filtration Membranes Using Cyrene®, a Safer Bio-Based Polar Aprotic Solventcitations
- 2018Elucidating enzymatic polymerisationscitations
- 2017Wholly biomass derivable sustainable polymers by ring-opening metathesis polymerisation of monomers obtained from furfuryl alcohol and itaconic anhydridecitations
- 20172,2,5,5-Tetramethyltetrahydrofuran (TMTHF)citations
- 2016Ring opening metathesis polymerisation of a new bio-derived monomer from itaconic anhydride and furfuryl alcoholcitations
- 2015Bio-derived materials as a green route for precious & critical metal recovery and re-usecitations
- 2015New insights into the curing of epoxidized linseed oil with dicarboxylic acidscitations
- 2014Bio-based thermoset composites from epoxidised linseed oil and expanded starchcitations
- 2013Alkali silicates and structured mesoporous silicas from biomass power station waste: the emergence of bio-MCMscitations
Places of action
Organizations | Location | People |
---|
article
Elucidating enzymatic polymerisations
Abstract
<p>The sustainable synthesis of polymers is a field with growing interest due to the need of modern society to preserve the environment whilst making used products and food sustainable for the future generations. In this work we investigate the possibility of synthesizing aliphatic polyesters derived from various dicarboxylic acid diesters and diols in a solvent-free reaction system. Candida antarctica lipase B was selected as biocatalyst and its selectivity towards the carbon and ester chain length were elucidated. The selected enzyme was able to synthesize various polyesters combining C<sub>4</sub>-C<sub>10</sub> diesters and C<sub>4</sub>-C<sub>8</sub> diols. All combinations led to monomer conversions above 90% in 24 h with the best number average molecular weights (M<sub>n</sub>) being obtained through the combination of dimethyl adipate and 1,8-octanediol leading to a M<sub>n</sub> of 7141 Da. Differential scanning calorimetry analysis shows a clear trend with an increase in melting temperature of the polymers that correlates with both the increase of the M<sub>n</sub> or of the polymer's constitutional repeat unit carbon chain length. Thermogravimetric analysis and rheology measurements performed on selected samples also confirm the trend showing a variation of the polymer's degradation temperatures and viscosity profiles.</p>