People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Sharma, Anirudh
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (21/21 displayed)
- 2022Methods of preparation of metal-doped and hybrid tungsten oxide nanoparticles for anticancer, antibacterial, and biosensing applicationscitations
- 2022Backbone-driven host-dopant miscibility modulates molecular doping in NDI conjugated polymerscitations
- 2022Backbone-driven host-dopant miscibility modulates molecular doping in NDI conjugated polymerscitations
- 2021Temperature-modulated doping at polymer semiconductor interfacescitations
- 2020p-Doping of a Hole Transport Material via a Poly(ionic liquid) for over 20% Efficiency and Hysteresis-Free Perovskite Solar Cellscitations
- 2020Water/Ethanol Soluble p-Type Conjugated Polymers for the Use in Organic Photovoltaicscitations
- 2019Probing the Relationship between Molecular Structures, Thermal Transitions, and Morphology in Polymer Semiconductors Using a Woven Glass-Mesh-Based DMTA Techniquecitations
- 2019Orange to green switching anthraquinone-based electrochromic materialcitations
- 2019Building intermixed donor-acceptor architectures for water-processable organic photovoltaicscitations
- 2018High Performance All-Polymer Photodetector Comprising a Donor–Acceptor–Acceptor Structured Indacenodithiophene–Bithieno[3,4- c ]Pyrroletetrone Copolymercitations
- 2018Engineering Two-Phase and Three-Phase Microstructures from Water-Based Dispersions of Nanoparticles for Eco-Friendly Polymer Solar Cell Applicationscitations
- 2018Engineering Two-Phase and Three-Phase Microstructures from Water-Based Dispersions of Nanoparticles for Eco-Friendly Polymer Solar Cell Applications
- 2018Environmentally friendly preparation of nanoparticles for organic photovoltaicscitations
- 2018Environmentally friendly preparation of nanoparticles for organic photovoltaicscitations
- 2018Insights into the Oxidant/Polymer Interfacial Growth of Vapor Phase Polymerized PEDOT Thin Filmscitations
- 2018High performance all-polymer photodetector comprising a donor-Acceptor-Acceptor structured indacenodithiophene-bithieno[3,4-c] pyrroletetrone copolymercitations
- 2017Optimization of the power conversion efficiency in high bandgap pyridopyridinedithiophene-based conjugated polymers for organic photovoltaics by the random terpolymer approachcitations
- 2017Unravelling the Thermomechanical Properties of Bulk Heterojunction Blends in Polymer Solar Cellscitations
- 2015Raman spectroscopy study of the transformation of the carbonaceous skeleton of a polymer-based nanoporous carbon along the thermal annealing pathwaycitations
- 2015Inducing cells to disperse nickel nanowires via integrin-mediated responsescitations
- 2011New insights into the structure of PAMAM dendrimer/gold nanoparticle nanocompositescitations
Places of action
Organizations | Location | People |
---|
article
Optimization of the power conversion efficiency in high bandgap pyridopyridinedithiophene-based conjugated polymers for organic photovoltaics by the random terpolymer approach
Abstract
<p>We report that the organic photovoltaic (OPV) performance of wide band gap pyridopyridinedithiophene-based conjugated polymers can be significantly improved by employing the random terpolymer approach for the development of new pyridopyridinedithiophene-based conjugated polymers. This is demonstrated by the synthesis of the alternating copolymer (P1) consisting of 3,3′-difluoro-2,2′-bithiophene and pyridopyridinedithiophene and the random terpolymer (P2) containing pyridopyridinedithiophene 3,3′-difluoro-2,2′-bithiophene and thiophene. OPV devices fabricated by P1 and P2 in combination with PC<sub>61</sub>BM and PC<sub>71</sub>BM in an inverted device configuration exhibited power conversion efficiencies (PCEs) of 1.5% and 4.0%, respectively. We identified that the main reason for the enhanced performance of the OPV devices based on the P2 random copolymer was the improved morphology (miscibility) between P2 and PCBM as compared to P1. More specifically, atomic force microscopy (AFM) and scanning electron microscopy (SEM) studies revealed that the P1 based films showed rougher surface with clear crystallization/precipitation of the polymer chains even after the addition of chloronaphthalene (CN) to the chloroform processing solvent which significantly limited the short circuit current density (J<sub>SC</sub>), fill factor (FF) and overall performance of the prepared photovoltaic devices. On the other hand, P2 based films showed better miscibility with the acceptor particularly when processed using 5% CN containing chloroform solvent giving a respectable improvement in the PCE of the photovoltaic devices.</p>