People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Kroon, Renee
Linköping University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (28/28 displayed)
- 2024Stretchable Tissue‐Like Gold Nanowire Composites with Long‐Term Stability for Neural Interfacescitations
- 2024Stretchable Tissue-Like Gold Nanowire Composites with Long-Term Stability for Neural Interfaces.
- 2024Impact of Oligoether Side-Chain Length on the Thermoelectric Properties of a Polar Polythiophenecitations
- 2023Mechanically Adaptive Mixed Ionic-Electronic Conductors Based on a Polar Polythiophene Reinforced with Cellulose Nanofibrilscitations
- 2023Impact of oxidation-induced ordering on the electrical and mechanical properties of a polythiophene co-processed with bistriflimidic acidcitations
- 2023Impact of Oligoether Side-Chain Length on the Thermoelectric Properties of a Polar Polythiophenecitations
- 2022Tuning of the elastic modulus of a soft polythiophene through molecular dopingcitations
- 2022Visualisation of individual dopants in a conjugated polymer : sub-nanometre 3D spatial distribution and correlation with electrical propertiescitations
- 2022Influence of Molecular Weight on the Organic Electrochemical Transistor Performance of Ladder-Type Conjugated Polymerscitations
- 2022Organogels from Diketopyrrolopyrrole Copolymer Ionene/Polythiophene Blends Exhibit Ground-State Single Electron Transfer in the Solid Statecitations
- 2022Double Doping of a Low-Ionization-Energy Polythiophene with a Molybdenum Dithiolene Complexcitations
- 2021Toughening of a Soft Polar Polythiophene through Copolymerization with Hard Urethane Segmentscitations
- 2020Water/Ethanol Soluble p-Type Conjugated Polymers for the Use in Organic Photovoltaicscitations
- 2019Thermally Activated in Situ Doping Enables Solid-State Processing of Conducting Polymers.citations
- 2019Probing the Relationship between Molecular Structures, Thermal Transitions, and Morphology in Polymer Semiconductors Using a Woven Glass-Mesh-Based DMTA Techniquecitations
- 2019Enhanced Thermoelectric Power Factor of Tensile Drawn Poly(3-hexylthiophene)citations
- 2018Environmentally friendly preparation of nanoparticles for organic photovoltaicscitations
- 2018Environmentally friendly preparation of nanoparticles for organic photovoltaicscitations
- 2018Highly stable doping of a polar polythiophene through co-processing with sulfonic acids and bistriflimidecitations
- 2017Enhanced Electrical Conductivity of Molecularly p-Doped Poly(3-hexylthiophene) through Understanding the Correlation with Solid-State Ordercitations
- 2017Polar Side Chains Enhance Processability, Electrical Conductivity, and Thermal Stability of a Molecularly p-Doped Polythiophenecitations
- 2017Optimization of the power conversion efficiency in high bandgap pyridopyridinedithiophene-based conjugated polymers for organic photovoltaics by the random terpolymer approachcitations
- 2017Enhanced Electrical Conductivity of Molecularly p-Doped Poly(3-hexylthiophene) through Understanding the Correlation with Solid-State Order.citations
- 2017Bulk Doping of Millimeter-Thick Conjugated Polymer Foams for Plastic Thermoelectricscitations
- 2016Thermoelectric plastics: from design to synthesis, processing and structure–property relationshipscitations
- 2015Comparison of selenophene and thienothiophene incorporation into pentacyclic lactam-based conjugated polymers for organic solar cellscitations
- 2015Comparison of selenophene and thienothiophene incorporation into pentacyclic lactam-based conjugated polymers for organic solar cellscitations
- 2012Charge separation dynamics in a narrow band gap polymer-PbS nanocrystal blend for efficient hybrid solar cellscitations
Places of action
Organizations | Location | People |
---|
article
Optimization of the power conversion efficiency in high bandgap pyridopyridinedithiophene-based conjugated polymers for organic photovoltaics by the random terpolymer approach
Abstract
<p>We report that the organic photovoltaic (OPV) performance of wide band gap pyridopyridinedithiophene-based conjugated polymers can be significantly improved by employing the random terpolymer approach for the development of new pyridopyridinedithiophene-based conjugated polymers. This is demonstrated by the synthesis of the alternating copolymer (P1) consisting of 3,3′-difluoro-2,2′-bithiophene and pyridopyridinedithiophene and the random terpolymer (P2) containing pyridopyridinedithiophene 3,3′-difluoro-2,2′-bithiophene and thiophene. OPV devices fabricated by P1 and P2 in combination with PC<sub>61</sub>BM and PC<sub>71</sub>BM in an inverted device configuration exhibited power conversion efficiencies (PCEs) of 1.5% and 4.0%, respectively. We identified that the main reason for the enhanced performance of the OPV devices based on the P2 random copolymer was the improved morphology (miscibility) between P2 and PCBM as compared to P1. More specifically, atomic force microscopy (AFM) and scanning electron microscopy (SEM) studies revealed that the P1 based films showed rougher surface with clear crystallization/precipitation of the polymer chains even after the addition of chloronaphthalene (CN) to the chloroform processing solvent which significantly limited the short circuit current density (J<sub>SC</sub>), fill factor (FF) and overall performance of the prepared photovoltaic devices. On the other hand, P2 based films showed better miscibility with the acceptor particularly when processed using 5% CN containing chloroform solvent giving a respectable improvement in the PCE of the photovoltaic devices.</p>