People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Heeley, Ellen L.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (17/17 displayed)
- 2024High ferroelectric performance of poly (vinylidene difluoride-co-hexafluoropropylene) - based membranes enabled by electrospinning and multilayer lamination
- 2022Oligomeric Curing Activators Enable Conventional Sulfur-Vulcanized Rubbers to Self-Healcitations
- 2020Crystallisation behaviour of composites of HDPE and MWCNTs: The effect of nanotube dispersion, orientation and polymer deformationcitations
- 2019Self-assembly of fluoride-encapsulated polyhedral oligomeric silsesquioxane (POSS) nanocrystalscitations
- 2018Stress-oscillation behaviour of semi-crystalline polymers: the case of poly(butylene succinate)citations
- 2018An investigation into the crystalline morphology transitions in poly-L-lactic acid (PLLA) under uniaxial deformation in the quasi-solid-state regimecitations
- 2018An investigation into the crystalline morphology transitions in poly-L- lactic acid (PLLA) under uniaxial deformation in the quasi-solid-state regimecitations
- 2017Confirmation of a Nanohybrid Shish-Kebab (NHSK) Structure in Composites of PET and MWCNTscitations
- 2017The formation of a nanohybrid shish-kebab (NHSK) structure in melt-processed composites of poly (ethylene terephthalate) (PET) and multi-walled carbon nanotubes (MWCNTs)citations
- 2016Structure evolution in poly(ethylene terephthalate) (PET) - Multi-walled carbon nanotube (MWCNT) composite films during <i>in-situ</i> uniaxial deformationcitations
- 2016Structure evolution in poly(ethylene terephthalate) (PET) - Multi-walled carbon nanotube (MWCNT) composite films during in-situ uniaxial deformation
- 2015Crystallization and morphology development in polyethylene-octakis(n-octadecyldimethylsiloxy)octasilsesquioxane nancomposite blends.citations
- 2014Morphology and crystallization kinetics of polyethylene/long alkyl-chain substituted Polyhedral Oligomeric Silsesquioxanes (POSS) nanocomposite blends: a SAXS/WAXS studycitations
- 2013Effect of processing parameters on the morphology development during extrusion of polyethylene tape: an in-line Small-Angle X-ray Scattering (SAXS) studycitations
- 2005Polymer processing: Using synchrotron radiation to follow structure development in commercial and novel polymer materialscitations
- 2003Are metastable, precrystallisation, density-fluctuations a universal phenomena?citations
- 2003Early stages of crystallization in Isotactic Polypropylenecitations
Places of action
Organizations | Location | People |
---|
article
Morphology and crystallization kinetics of polyethylene/long alkyl-chain substituted Polyhedral Oligomeric Silsesquioxanes (POSS) nanocomposite blends: a SAXS/WAXS study
Abstract
The dispersal, quiescent crystallization kinetics and morphology of a series of unique polyethylene–polyhedral oligomeric silsesquioxanes (PE-POSS)nanocomposite blends is presented. POSS molecules with long linear alkyl-chain substituents were blended at one composition into a commercial low density polyethylene. Time-resolved Small- and Wide-Angle X-ray scattering (SAXS/WAXS) and thermal techniques were used to elucidate the affect that POSS and its substituent groups have on the dispersal and crystallization kinetics of the host polymer. The miscibility and dispersal of the POSS molecules was seen to increase with the increasing alkyl-chain length substituents suggesting increased compatibility and interaction with the host polymer chains. The POSS molecules act as nucleating agents increasing the crystallinity, crystallization kinetics and influencing the final lamellar morphology. Thus, these unique POSS compounds show great potential as nancomposite filler particles in polyolefins where the alkyl-chain substituent plays a vital role in its compatibility and subsequent improvement of physical properties in the host polymer.