People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Gastaldi, Emmanuelle
University of Montpellier
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (27/27 displayed)
- 2023Monitoring the degradation status of biodegradable polymers by assessing thermal properties
- 2023Compostability of certified biodegradable plastics at industrial scale processing conditions
- 2022Effects of Kraft lignin and corn cob agro-residue on the properties of injected-moulded biocompositescitations
- 2022Effects of Kraft lignin and corn cob agro-residue on the properties of injected-moulded biocompositescitations
- 2020Multi-faceted migration in food contact polyethylene-based nanocomposite packagingcitations
- 2020How Vine Shoots as Fillers Impact the Biodegradation of PHBV-Based Compositescitations
- 2019How olive pomace can be valorized as fillers to tune the biodegradation of PHBV based compositescitations
- 2019A comparative study of degradation mechanisms of PBSA and PHBV under laboratoryscale composting conditionscitations
- 2019New Insights For The Fragmentation Of Plastics Into Microplastics In The Ocean
- 2019Experimental and theoretical study of the erosion of semi-crystalline polymers and the subsequent generation of microparticles.citations
- 2018Fast-Biodegrading polymers
- 2018Soy protein isolate nanocomposite film enriched with eugenol, an antimicrobial agent: Interactions and propertiescitations
- 2018Soy protein isolate nanocomposite film enriched with eugenol, an antimicrobial agent: Interactions and propertiescitations
- 2018Nanostructured biopolymers obtained from blends by extrusion
- 2018How Performance and Fate of Biodegradable Mulch Films are Impacted by Field Ageingcitations
- 2017Contribution of nanoclay to the additive partitioning in polymerscitations
- 2016Effect of nanoclay on the transfer properties of immanent additives in food packagescitations
- 2013Water transport mechanisms in wheat gluten based (nano) composite materialscitations
- 2013Nanoparticle size and water diffusivity in nanocomposite agro-polymer based filmscitations
- 2013Nanoparticle size and water diffusivity in nanocomposite agro-polymer based filmscitations
- 2013Protein-Based Nanocomposites for Food Packagingcitations
- 2013Biocomposites from wheat proteins and fibers: Structure/mechanical properties relationshipscitations
- 2013Adhesion properties of wheat-based particlescitations
- 2012Protein/Clay Nano-Biocompositescitations
- 2011Impact of high pressure treatment on the structure of montmorillonitecitations
- 2010Réduction de l'impact de l’utilisation des produits phytosanitaires: Contrôle de la libération dans le sol par un granulé protéique biodégradable nanocomposite
- 2010Synthesis of nanocomposite films from wheat gluten matrix and MMT intercalated with different quaternary ammonium salts by way of hydroalcoholic solvent castingcitations
Places of action
Organizations | Location | People |
---|
article
Water transport mechanisms in wheat gluten based (nano) composite materials
Abstract
An in depth investigation of water transport mechanisms has been undertaken on extruded wheat gluten (WG)/clay materials, which have been shown to display either a nanocomposite or a microcomposite structure depending on the nature of the nanoclay used (i.e. unmodified sodium montmorillonite (named HPS) or organically modified montmorillonite (Cloisite (R) 30B), respectively). The interplay of two concomitant phenomena has been evidenced: first a plasticization of protein chains by water that favors water diffusivity and, second, a clusterization of water as revealed by the Zimm and Lundberg and Guggenheim-Anderson-de Boer theories leading to a slowdown and finally a decrease in water mobility within the polymer. Comparison between liquid and vapor water diffusivity showed a strong impact of the state of the water phase in contact, the water liquid diffusivity being three fold higher than water vapor diffusivity. This Schroeder's paradox could be related to the microporous structure of the extruded wheat gluten materials in which liquid water moves due to an additional capillary phenomenon resulting in a higher apparent diffusivity. As well predicted by the Bharadwaj's tortuosity-based mathematical model, the achievement of a well-exfoliated structure (as observed in the case of the WG-HPS system) has no effect on water diffusivity, whether the phase in contact is liquid or vapor. On the contrary, such a structure led to a significant reduction of the liquid water uptake that might be ascribed to water hydrogen bondings established between the hydrophilic sites of wheat gluten and the unmodified montmorillonite, in turn reducing their availability for water. (C) 2013 Elsevier Ltd. All rights reserved.