Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Van Nuland, Tim

  • Google
  • 3
  • 5
  • 43

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2023On the anisotropy of thick-walled wire arc additively manufactured stainless steel parts23citations
  • 2022Microstructural modeling and measurements of anisotropic plasticity in large scale additively manufactured 316L stainless steel13citations
  • 2021A novel 3D anisotropic Voronoi microstructure generator with an advanced spatial discretization scheme7citations

Places of action

Chart of shared publication
Geers, Mgd Marc
2 / 117 shared
Van Dommelen, Johannes A. W.
3 / 32 shared
Hoefnagels, Jpm Johan
2 / 71 shared
Palmeira Belotti, Luca
3 / 8 shared
Geers, M. G. D.
1 / 95 shared
Chart of publication period
2023
2022
2021

Co-Authors (by relevance)

  • Geers, Mgd Marc
  • Van Dommelen, Johannes A. W.
  • Hoefnagels, Jpm Johan
  • Palmeira Belotti, Luca
  • Geers, M. G. D.
OrganizationsLocationPeople

article

Microstructural modeling and measurements of anisotropic plasticity in large scale additively manufactured 316L stainless steel

  • Geers, Mgd Marc
  • Van Dommelen, Johannes A. W.
  • Hoefnagels, Jpm Johan
  • Palmeira Belotti, Luca
  • Van Nuland, Tim
Abstract

In this paper, the wire + arc additive manufacturing process-induced plastic anisotropy of 316L stainless steel is analyzed by means of detailed 3D microstructural modeling and compared to experimental tensile tests. A spatially varying representative grain texture and morphology are incorporated in a representative volume element having the size of a single fusion zone and which is generated using a 3D anisotropic Voronoi algorithm. The constitutive behavior is modeled at the grain scale by a finite element crystal plasticity framework, of which the corresponding parameters are obtained from experimental tensile tests in one of the processing directions. As a result of the spatially correlated grain orientations inside the fusion zone, distinct deformation patterns and strain localizations have been observed during experimental tensile tests. The strain fields obtained from numerical simulations are compared to the experimental deformation patterns and a remarkable correspondence is observed. Numerical simulations are also performed in various uniaxial loading directions to predict the 3D yield behavior. A strongly anisotropic plastic response is obtained and a convincing match between the numerical model and experimental tensile tests is found in various loading directions.

Topics
  • impedance spectroscopy
  • polymer
  • grain
  • stainless steel
  • simulation
  • anisotropic
  • texture
  • plasticity
  • wire
  • additive manufacturing
  • crystal plasticity