Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Charlotte, M.

  • Google
  • 3
  • 3
  • 62

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2016An atomistically-meaningful pseudocontinuum representation for the finite monatomic chain with harmonic nearest-neighbor interactions2citations
  • 2013Représentation quasicontinue d’un crystal phononique unidimensionnel en un métamatériau acoustiquecitations
  • 2006Initiation of cracks with cohesive force models: a variational approach60citations

Places of action

Chart of shared publication
Morlier, Joseph
1 / 10 shared
Marigo, Jean-Jacques
1 / 6 shared
Laverne, Jérôme
1 / 2 shared
Chart of publication period
2016
2013
2006

Co-Authors (by relevance)

  • Morlier, Joseph
  • Marigo, Jean-Jacques
  • Laverne, Jérôme
OrganizationsLocationPeople

article

Initiation of cracks with cohesive force models: a variational approach

  • Marigo, Jean-Jacques
  • Laverne, Jérôme
  • Charlotte, M.
Abstract

International audience ; In the spirit of the variational approach of Fracture Mechanics initiated in [Del Piero, G., 1997. One-dimensional ductile-brittle transition, yielding and structured deformations. In: P. Argoul, M. Frémond (Eds.), Proceedings of IUTAM Symposium “Variations de domaines et frontières libres en mécanique”, Paris, 1997, Kluwer Academic] and [Francfort, G.A., Marigo, J.-J., 1998. Revisiting brittle fracture as an energy minimization problem. J. Mech. Phys. Solids 46 (8), 1319–1342], we define the loss of stability of the elastic response of the body as the criterion of initiation of cracks. The result is very sensitive to the choice of the surface energy density. On one hand, if we adopt the Griffith assumption, then the elastic state is generally always stable. On the other hand, in the case of a surface energy of the Barenblatt type, i.e. a surface energy depending non-trivially on the jump of the displacement and inducing cohesive forces, the elastic response remains stable only if the stress field does not reach a critical value. In the full three-dimensional context of an isotropic material, we prove that this yield stress criterion is equivalent to a maximal traction criterion and a maximal shear criterion if the surface energy density is Fréchet differentiable at the origin. When the surface energy density is only Gâteaux differentiable, we obtain a yield stress criterion based on an intrinsic curve in the Mohr diagram. In any case, the domain of the admissible stress tensors is convex, unbounded in the direction of the hydrostatic pressures and depends only on the extreme eigenvalues of the stress tensor.

Topics
  • density
  • impedance spectroscopy
  • surface
  • energy density
  • crack
  • Energy-dispersive X-ray spectroscopy
  • isotropic
  • one-dimensional
  • surface energy