People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Bund, Andreas
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (23/23 displayed)
- 2024A Novel Method for Preparation of Al–Ni Reactive Coatings by Incorporation of Ni Nanoparticles into an Al Matrix Fabricated by Electrodeposition in AlCl<sub>3</sub>:1‐Eethyl‐3‐Methylimidazolium Chloride (1.5:1) Ionic Liquid Containing Ni Nanoparticles
- 2024Integration of Multijunction Absorbers and Catalysts for Efficient Solar‐Driven Artificial Leaf Structures: A Physical and Materials Science Perspectivecitations
- 2023Analysis of Pre-Treatment Processes to Enable Electroplating on Nitrided Steel
- 2023Electrochemical reduction of tantalum and titanium halides in 1-butyl-1-methylpyrrolidinium bis (trifluoromethyl-sulfonyl)imide and 1-butyl-1-methylpyrrolidinium trifluoromethanesulfonate ionic liquids
- 2023Quasi-in-Situ Analysis of Electropolished Additively Manufactured Stainless Steel Surfaces
- 2022Hollow platinum-gold and palladium-gold nanoparticles: synthesis and characterization of composition-structure relationshipcitations
- 2022Corrosion Properties of Ni-P-B Dispersion Coating for Industrial Knives and Bladescitations
- 2022Selective Metallization of Polymers: Surface Activation of Polybutylene Terephthalate (PBT) Assisted by Picosecond Laser Pulsescitations
- 2021Selective metallization of polymers: surface activation of polybutylene terephthalate (PBT) assisted by picosecond laser pulsescitations
- 2021The need for digitalisation in electroplating – How digital approaches can help to optimize the electrodeposition of chromium from trivalent electrolytes
- 2021Anti-corrosive siloxane coatings for improved long-term performance of supercapacitors with an aqueous electrolytecitations
- 2021Analysis of the physical and photoelectrochemical properties of c-Si(p)/a-SiC:H(p) photocathodes for solar water splittingcitations
- 2020Aluminium-poly(3,4-ethylenedioxythiophene) rechargeable battery with ionic liquid electrolytecitations
- 2019Relation between color and surface morphology of electrodeposited chromium for decorative applicationscitations
- 2019Fluidic self-assembly on electroplated multilayer solder bumps with tailored transformation imprinted melting pointscitations
- 2019Electrochemical deposition of silicon from a sulfolane-based electrolyte: effect of applied potentialcitations
- 2019Nanoscale morphological changes at lithium interface, triggered by the electrolyte composition and electrochemical cyclingcitations
- 2018Structure and formation of trivalent chromium conversion coatings containing cobalt on zinc plated steelcitations
- 2017An electrochemical quartz crystal microbalance study on electrodeposition of aluminum and aluminum-manganese alloyscitations
- 2016Ultrasound assisted electrodeposition of Zn and Zn-TiO2 coatingscitations
- 2012Electrochemical supercapacitors based on a novel graphene/conjugated polymer composite systemcitations
- 2010Do solvation layers of ionic liquids influence electrochemical reactions?citations
- 2009Novel amino-acid-based polymer/multi-walled carbon nanotube bio-nanocompositescitations
Places of action
Organizations | Location | People |
---|
article
Aluminium-poly(3,4-ethylenedioxythiophene) rechargeable battery with ionic liquid electrolyte
Abstract
Aluminium is one of the promising negative electrode materials for modern batteries. It is environmentally abundant, affordable and recyclable, and its three-electron redox reaction offers high theoretical specific energy and power. However, the development of a suitable positive electrode continues to limit the practical performance of aluminium batteries. In this study, the application of a 3D conductive polymer poly(3,4-ethylenedioxythiophene) (PEDOT) as a potential positive electrode material is reported. The battery performance, C-rate versus capacity extraction and successive charge/discharge cycling of a full cell (aluminium (-); PEDOT (+); EMImCl-AlCl 3 ionic liquid electrolyte) is investigated. The design of the PEDOT electrode (using 3D reticulated vitreous carbon as substrate) is studied, and is supported by microstructure characterisation. The aluminium-PEDOT battery provides 50–64 Wh kg −1 specific energy and 32–40 W kg −1 specific power. The battery has a coulombic efficiency >95%, stable operation over 100 cycles and charge rates up to 80C. In summary, direct and meaningful progress has been made towards achieving useful capacity and cycling stability from aluminium batteries intended for future energy storage.