Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Craig, Ben

  • Google
  • 1
  • 5
  • 33

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2020Aluminium-poly(3,4-ethylenedioxythiophene) rechargeable battery with ionic liquid electrolyte33citations

Places of action

Chart of shared publication
Ponce De León, C.
1 / 46 shared
Schoetz, Theresa
1 / 4 shared
Low, Chee Tong John
1 / 2 shared
Bund, Andreas
1 / 23 shared
Ueda, Mikito
1 / 3 shared
Chart of publication period
2020

Co-Authors (by relevance)

  • Ponce De León, C.
  • Schoetz, Theresa
  • Low, Chee Tong John
  • Bund, Andreas
  • Ueda, Mikito
OrganizationsLocationPeople

article

Aluminium-poly(3,4-ethylenedioxythiophene) rechargeable battery with ionic liquid electrolyte

  • Ponce De León, C.
  • Schoetz, Theresa
  • Craig, Ben
  • Low, Chee Tong John
  • Bund, Andreas
  • Ueda, Mikito
Abstract

Aluminium is one of the promising negative electrode materials for modern batteries. It is environmentally abundant, affordable and recyclable, and its three-electron redox reaction offers high theoretical specific energy and power. However, the development of a suitable positive electrode continues to limit the practical performance of aluminium batteries. In this study, the application of a 3D conductive polymer poly(3,4-ethylenedioxythiophene) (PEDOT) as a potential positive electrode material is reported. The battery performance, C-rate versus capacity extraction and successive charge/discharge cycling of a full cell (aluminium (-); PEDOT (+); EMImCl-AlCl 3 ionic liquid electrolyte) is investigated. The design of the PEDOT electrode (using 3D reticulated vitreous carbon as substrate) is studied, and is supported by microstructure characterisation. The aluminium-PEDOT battery provides 50–64 Wh kg −1 specific energy and 32–40 W kg −1 specific power. The battery has a coulombic efficiency >95%, stable operation over 100 cycles and charge rates up to 80C. In summary, direct and meaningful progress has been made towards achieving useful capacity and cycling stability from aluminium batteries intended for future energy storage.

Topics
  • impedance spectroscopy
  • microstructure
  • polymer
  • Carbon
  • extraction
  • aluminium