People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Omar, Noshin
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (7/7 displayed)
- 2018Low-temperature aging mechanisms of commercial graphite/LiFePO4 cells cycled with a simulated electric vehicle load profile—A post-mortem studycitations
- 2018Low-temperature aging mechanisms of commercial graphite/LiFePO 4 cells cycled with a simulated electric vehicle load profile—A post-mortem studycitations
- 2016Batteries 2020 – Lithium - ion battery first and second life ageing, validated battery models, lifetime modelling and ageing assessment of thermal parameterscitations
- 2012Rechargeable Energy Storage Systems for Plug-in Hybrid Electric Vehicles-Assessment of Electrical Characteristics
- 2010Evaluation of performance characteristics of various lithium-ion batteries for use in BEV applicationcitations
- 2010Evaluation of performance characteristics of various lithium batteries for use in BEV application
- 2010Assessment of Performance Characteristics of Lithium-Ion Batteries for PHEV Vehicles Applications Based on a Newly Test Methodology
Places of action
Organizations | Location | People |
---|
article
Low-temperature aging mechanisms of commercial graphite/LiFePO4 cells cycled with a simulated electric vehicle load profile—A post-mortem study
Abstract
Reduced cycle life is one of the issues hindering the adoption of large lithium-ion battery systems in cold-climate countries. Thus, the aging mechanisms of commercial graphite/LiFePO4 (lithium iron phosphate) cells at low temperatures (room temperature, 0 °C and −18 °C) are investigated here through an extended post-mortem analysis. The cylindrical 2.3 Ah cells were cycled with a simulated battery electric vehicle load profile, and the aged cells were then disassembled inside an argon-filled glove box. A non-cycled cell was also dismantled as a reference. Half-cell testing was utilized to evaluate the degradation of the electrochemical performance of the electrodes, whereas X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectroscopy, inductively coupled plasma optical emission spectroscopy and Raman spectroscopy were used to characterize the changes in the materials properties. The full-cell performance loss was mostly seen as capacity fade whereas significant changes in the cell impedance were not observed. Depending on the cycling temperature, loss of cyclable lithium due to solid electrolyte interphase growth and/or lithium plating on the graphite electrode were observed, and they are attributed as the main mechanisms responsible for the capacity loss. Furthermore, increased disordering of the graphite electrode was observed for the cell cycled at −18 °C. The graphite disordering was hypothesized to result from diffusion-induced stress and the mechanical stress caused by severe lithium plating. In contrast, the LiFePO4 electrodes showed only minimal signs of degradation regardless of the cycling temperature. ; Peer reviewed