People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Kallio, Tanja
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (38/38 displayed)
- 2024Amorphous carbon modulated-quantum dots NiO for efficient oxygen evolution in anion exchange membrane water electrolyzercitations
- 2024Stabilized Nickel-Rich-Layered Oxide Electrodes for High-Performance Lithium-Ion Batteriescitations
- 2024Stabilized Nickel-Rich-Layered Oxide Electrodes for High-Performance Lithium-Ion Batteriescitations
- 2024FeNi nanoparticle-modified reduced graphene oxide as a durable electrocatalyst for oxygen evolutioncitations
- 2024Graphite recovery from waste Li-ion battery black mass for direct re-usecitations
- 2024Wood flour and Kraft lignin enable air-drying of the nanocellulose-based 3D-printed structurescitations
- 2023Boosting CO-based synthesis of single-walled carbon nanotubes with hydrogencitations
- 2023Robust method for uniform coating of carbon nanotubes with V2O5 for next-generation transparent electrodes and Li-ion batteriescitations
- 2023Electrochemical reduction of carbon dioxide to formate in a flow cell on CuSx grown by atomic layer depositioncitations
- 2023Robust method for uniform coating of carbon nanotubes with V 2 O 5 for next-generation transparent electrodes and Li-ion batteriescitations
- 2022Multifunctional Elastic Nanocomposites with Extremely Low Concentrations of Single-Walled Carbon Nanotubescitations
- 2022In-situ dilatometry and impedance spectroscopy characterization of single walled carbon nanotubes blended LiNi 0.6 Mn 0.2 Co 0.2 O 2 electrode with enhanced performancecitations
- 2022Hydrogen evolution in alkaline medium on intratube and surface decorated PtRu catalystcitations
- 2022Multifunctional Elastic Nanocomposites with Extremely Low Concentrations of Single-Walled Carbon Nanotubes.citations
- 2020Electrochemical properties of nitrogen and oxygen doped reduced graphene oxidecitations
- 2020Active IrO2 and NiO thin films prepared by atomic layer deposition for oxygen evolution reactioncitations
- 2020CO 2 electroreduction on bimetallic Pd-In nanoparticlescitations
- 2020CO2 electroreduction on bimetallic Pd-In nanoparticlescitations
- 2020Mesoporous Carbon Microfibers for Electroactive Materials Derived from Lignocellulose Nanofibrilscitations
- 2020CO2electroreduction on bimetallic Pd-In nanoparticlescitations
- 2020Improved Hydrogen Oxidation Reaction Activity and Stability of Buried Metal-Oxide Electrocatalyst Interfacescitations
- 2020Improved Hydrogen Oxidation Reaction Activity and Stability of Buried Metal-Oxide Electrocatalyst Interfacescitations
- 2019Stable reference electrode in polymer electrolyte membrane electrolyser for three-electrode measurementscitations
- 2019Room-Temperature Micropillar Growth of Lithium–Titanate–Carbon Composite Structures by Self-Biased Direct Current Magnetron Sputtering for Lithium Ion Microbatteriescitations
- 2019Flexible and Mechanically Durable Asymmetric Supercapacitor Based on NiCo-Layered Double Hydroxide and Nitrogen-Doped Graphene Using a Simple Fabrication Methodcitations
- 2019Flexible and Mechanically Durable Asymmetric Supercapacitor Based on NiCo-Layered Double Hydroxide and Nitrogen-Doped Graphene Using a Simple Fabrication Methodcitations
- 2018Low-temperature aging mechanisms of commercial graphite/LiFePO4 cells cycled with a simulated electric vehicle load profile—A post-mortem studycitations
- 2018Low-temperature aging mechanisms of commercial graphite/LiFePO 4 cells cycled with a simulated electric vehicle load profile—A post-mortem studycitations
- 2018Experimental and Computational Investigation of Hydrogen Evolution Reaction Mechanism on Nitrogen Functionalized Carbon Nanotubescitations
- 2017Straightforward synthesis of nitrogen-doped carbon nanotubes as highly active bifunctional electrocatalysts for full water splittingcitations
- 2017Co-electrodeposited mesoporous PtM (M=Co, Ni, Cu) as an active catalyst for oxygen reduction reaction in a polymer electrolyte membrane fuel cellcitations
- 2017Highly active platinum nanoparticles supported by nitrogen/sulfur functionalized graphene composite for ethanol electro-oxidationcitations
- 2016Maghemite nanoparticles decorated on carbon nanotubes as efficient electrocatalysts for the oxygen evolution reactioncitations
- 2015Trimetallic catalyst based on PtRu modified by irreversible adsorption of Sb for direct ethanol fuel cellscitations
- 2010Immobilization of Pyrroloquinoline Quinone on Few-Walled Carbon Nanotubes
- 2004Versatile synthetic route to tailor-made proton exchange membranes for fuel cell applications by combination of radiation chemistry of polymers with nitroxide-mediated living free radical graft polymerizationcitations
- 2004Water balance in a free-breathing polymer electrolyte membrane fuel cellcitations
- 2003Electrochemical and physicochemical characterization of radiation-grafted membranes for fuel cells
Places of action
Organizations | Location | People |
---|
article
Low-temperature aging mechanisms of commercial graphite/LiFePO4 cells cycled with a simulated electric vehicle load profile—A post-mortem study
Abstract
Reduced cycle life is one of the issues hindering the adoption of large lithium-ion battery systems in cold-climate countries. Thus, the aging mechanisms of commercial graphite/LiFePO4 (lithium iron phosphate) cells at low temperatures (room temperature, 0 °C and −18 °C) are investigated here through an extended post-mortem analysis. The cylindrical 2.3 Ah cells were cycled with a simulated battery electric vehicle load profile, and the aged cells were then disassembled inside an argon-filled glove box. A non-cycled cell was also dismantled as a reference. Half-cell testing was utilized to evaluate the degradation of the electrochemical performance of the electrodes, whereas X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectroscopy, inductively coupled plasma optical emission spectroscopy and Raman spectroscopy were used to characterize the changes in the materials properties. The full-cell performance loss was mostly seen as capacity fade whereas significant changes in the cell impedance were not observed. Depending on the cycling temperature, loss of cyclable lithium due to solid electrolyte interphase growth and/or lithium plating on the graphite electrode were observed, and they are attributed as the main mechanisms responsible for the capacity loss. Furthermore, increased disordering of the graphite electrode was observed for the cell cycled at −18 °C. The graphite disordering was hypothesized to result from diffusion-induced stress and the mechanical stress caused by severe lithium plating. In contrast, the LiFePO4 electrodes showed only minimal signs of degradation regardless of the cycling temperature. ; Peer reviewed