Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Sibley, Alexander

  • Google
  • 1
  • 3
  • 11

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2018Investigation into the behaviour of aluminium and steel under melt/freeze cyclic conditions11citations

Places of action

Chart of shared publication
Liu, Ming
1 / 17 shared
Belusko, Martin
1 / 3 shared
Jacob, Rhys
1 / 3 shared
Chart of publication period
2018

Co-Authors (by relevance)

  • Liu, Ming
  • Belusko, Martin
  • Jacob, Rhys
OrganizationsLocationPeople

article

Investigation into the behaviour of aluminium and steel under melt/freeze cyclic conditions

  • Liu, Ming
  • Belusko, Martin
  • Jacob, Rhys
  • Sibley, Alexander
Abstract

<p>In the current study aluminium has been cycled around its melting temperature (660 °C) in stainless and carbon steel crucibles. The interaction between the crucibles and aluminium have been studied using scanning electron microscopy (SEM) and auger electron spectroscopy (AES), while the phase change behaviour of the aluminium has also been studied. It could be seen that after 10 cycles a black carbonaceous layer forms on the surface of the crucibles preventing aluminium and steel interaction. After 60 cycles this layer is still present on the stainless steel samples but has been removed, from the carbon steel surface, most likely from thermal cycling. This layer has resulted in much fewer instances of aluminium penetration into the stainless steel over the carbon steel. Similar results are seen for the 100 cycle samples. In instances where aluminium has been in contact with the steel, Fe<sub>2</sub>Al<sub>5</sub> and FeAl<sub>3</sub> have been present. It is suggested that the presence of these products is the likely cause of the change in aluminium phase change performance. Overall, it was found that under the conditions present in the study that stainless steel suffered from far less aluminium intrusion than the carbon steel samples. It was hypothesised that the carbon layer found on the surface of the samples largely prevented any aluminium interaction, preventing the loss of stainless steel at the interface. In contrast to the mild steel samples, the carbon layer was found to adhere to the stainless steel much more effectively, preventing aluminium and steel interaction. The potential for this carbon layer to act as a barrier to corrosion between stainless steel and aluminium warrants further investigation.</p>

Topics
  • impedance spectroscopy
  • surface
  • Carbon
  • stainless steel
  • corrosion
  • scanning electron microscopy
  • melt
  • aluminium
  • laser emission spectroscopy
  • melting temperature
  • atomic emission spectroscopy
  • Auger electron spectroscopy