People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Lehtonen, Matti
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (12/12 displayed)
- 2024Investigation of soil resistivity impacts on the electrodes of grounding system subjected to lightning strikescitations
- 2023A Novel Polyester Varnish Nanocomposites for Electrical Machines with Improved Thermal and Dielectric Properties Using Functionalized TiO2 Nanoparticlescitations
- 2023Condition Assessment of Natural Ester–Mineral Oil Mixture Due to Transformer Retrofilling via Sensing Dielectric Propertiescitations
- 2020PVC nanocomposites for cable insulation with enhanced dielectric properties, partial discharge resistance and mechanical performancecitations
- 2020PVC nanocomposites for cable insulation with enhanced dielectric properties, partial discharge resistance and mechanical performancecitations
- 2020Recent advances in polymer nanocomposites based on polyethylene and polyvinylchloride for power cablescitations
- 2020Recent advances in polymer nanocomposites based on polyethylene and polyvinylchloride for power cablescitations
- 2019Development of industrial scale PVC nanocomposites with comprehensive enhancement in dielectric propertiescitations
- 2018Multiple enhancement of PVC cable insulation using functionalized SiO2 nanoparticles based nanocompositescitations
- 2018Experimental measurements of partial discharge activity within LDPE/TiO2 nanocompositescitations
- 2018Impact of Nanoparticles Functionalization on Partial Discharge Activity within PVC/SiO2 Nanocompositescitations
- 2017Enhancement of dielectric and mechanical properties of Polyvinyl Chloride nanocomposites using functionalized TiO2 nanoparticlescitations
Places of action
Organizations | Location | People |
---|
article
Multiple enhancement of PVC cable insulation using functionalized SiO2 nanoparticles based nanocomposites
Abstract
<p>Manufacturing of a new insulation material for power cables has become necessary in order to withstand electrical and mechanical stresses. The current study aims to enhance the dielectric and mechanical properties of Polyvinyl Chloride (PVC), one of the wide used power cable insulation, by the insertion of chemically modified silica (silicon dioxide, SiO<sub>2</sub>) nanoparticles. The surface functionalization of the inserted SiO<sub>2</sub> nanoparticles was performed using amino silane coupling agent, and the PVC/SiO<sub>2</sub> nanocomposites were synthesized with different concentrations of nanoparticles. The surface morphology and chemical structure of the prepared samples were characterized by field emission scanning electron microscopy (FE-SEM) and Fourier transformation infrared spectroscopy (FT-IR). The mechanical properties of the obtained nanocomposites showed that the insertion of functionalized nanoparticles is able to increase the tensile strength and the Young's modulus of samples, however it decreases their elongation. In addition, the dielectric properties of PVC/SiO<sub>2</sub> nanocomposites, such as relative permittivity (ε<sub>r</sub> ) and dielectric loss (tan δ), were also measured in a frequency range of 20Hz-1MHz. Moreover, AC breakdown voltage of the prepared samples was measured under uniform and non-uniform field, and AC dielectric strength was evaluated using finite element method (FEM) for non-uniform and uniform field. For further evaluation, DC dielectric strength was also measured under uniform field. The obtained data revealed that PVC/SiO<sub>2</sub> nanocomposites with functionalized SiO<sub>2</sub> nanoparticles exhibited better dielectric properties compared to that with un-functionalized one or that of neat PVC. The physical mechanisms behind the obtained enhancements have been discussed.</p>