Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Weber, Peter K.

  • Google
  • 2
  • 8
  • 138

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2008Element partitioning between magnesium silicate perovskite and ferropericlase114citations
  • 2007Chemical imaging with NanoSIMS24citations

Places of action

Chart of shared publication
Ryerson, Frederick J.
2 / 4 shared
Addad, Ahmed
1 / 39 shared
Auzende, Anne Line
1 / 1 shared
Badro, James
2 / 11 shared
Siebert, Julien
1 / 8 shared
Fiquet, Guillaume
1 / 19 shared
Hutcheon, Ian D.
1 / 1 shared
Ricolleau, Angèle
1 / 2 shared
Chart of publication period
2008
2007

Co-Authors (by relevance)

  • Ryerson, Frederick J.
  • Addad, Ahmed
  • Auzende, Anne Line
  • Badro, James
  • Siebert, Julien
  • Fiquet, Guillaume
  • Hutcheon, Ian D.
  • Ricolleau, Angèle
OrganizationsLocationPeople

article

Chemical imaging with NanoSIMS

  • Weber, Peter K.
  • Ryerson, Frederick J.
  • Badro, James
  • Hutcheon, Ian D.
  • Ricolleau, Angèle
Abstract

<p>We use a combination of nanometer-resolution secondary ion mass spectrometry (NanoSIMS) and analytical transmission electron microscopy (ATEM) for chemical imaging of material transformed in a laser-heated diamond anvil cell (LH-DAC), in the pressure and temperature range of Earth's lower mantle. MORB (mid-ocean ridge basalt), one of the components of subducted oceanic lithosphere, was transformed to an assemblage of Mg-perovskite, Ca-perovskite, stishovite and a calcium ferrite-structure phase at 55 GPa and 2100 °C in an LH-DAC. Elemental imaging spanning the entire range of concentrations, from major elements such as silicon (49.5 wt.% SiO<sub>2</sub>) to trace elements such as strontium (118 ppm), scandium, and yttrium (both at 40 ppm) was obtained with a Cameca NanoSIMS 50. We observe a preferential partitioning of scandium, yttrium and strontium in the calcium silicate perovskite phase, and we compare this to recently measured solid-liquid partition coefficients and fractionation at lower pressures. This type of measurement demonstrates that even the most complex mineral assemblages can be probed using this combination of techniques and opens new pathways towards the characterization and quantification of geochemical interactions and processes occurring in the deep Earth.</p>

Topics
  • perovskite
  • mineral
  • phase
  • Strontium
  • transmission electron microscopy
  • Silicon
  • Yttrium
  • Calcium
  • spectrometry
  • secondary ion mass spectrometry
  • trace element
  • fractionation
  • Scandium