Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Vieira, Diana

  • Google
  • 1
  • 5
  • 78

Joint Research Centre

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2018Predicting the effectiveness of different mulching techniques in reducing post-fire runoff and erosion at plot scale with the RUSLE, MMF and PESERA models78citations

Places of action

Chart of shared publication
Keizer, J. J.
1 / 1 shared
Serpa, D.
1 / 2 shared
Prats, S. A.
1 / 1 shared
Neves, R.
1 / 1 shared
Nunes, João Pedro
1 / 2 shared
Chart of publication period
2018

Co-Authors (by relevance)

  • Keizer, J. J.
  • Serpa, D.
  • Prats, S. A.
  • Neves, R.
  • Nunes, João Pedro
OrganizationsLocationPeople

article

Predicting the effectiveness of different mulching techniques in reducing post-fire runoff and erosion at plot scale with the RUSLE, MMF and PESERA models

  • Vieira, Diana
  • Keizer, J. J.
  • Serpa, D.
  • Prats, S. A.
  • Neves, R.
  • Nunes, João Pedro
Abstract

Wildfires have become a recurrent threat for many Mediterranean forest ecosystems. The characteristics of the Mediterranean climate, with its warm and dry summers and mild and wet winters, make this a region prone to wildfire occurrence as well as to post-fire soil erosion. This threat is expected to be aggravated in the future due to climate change and land management practices and planning. The wide recognition of wildfires as a driver for runoff and erosion in burnt forest areas has created a strong demand for model-based tools for predicting the post-fire hydrological and erosion response and, in particular, for predicting the effectiveness of post-fire management operations to mitigate these responses. In this study, the effectiveness of two post-fire treatments (hydromulch and natural pine needle mulch) in reducing post-fire runoff and soil erosion was evaluated against control conditions (i.e. untreated conditions), at different spatial scales. The main objective of this study was to use field data to evaluate the ability of different erosion models: (i) empirical (RUSLE), (ii) semi-empirical (MMF), and (iii) physically-based (PESERA), to predict the hydrological and erosive response as well as the effectiveness of different mulching techniques in fire-affected areas. The results of this study showed that all three models were reasonably able to reproduce the hydrological and erosive processes occurring in burned forest areas. In addition, it was demonstrated that the models can be calibrated at a small spatial scale (0.5 m2) but provide accurate results at greater spatial scales (10 m2). From this work, the RUSLE model seems to be ideal for fast and simple applications (i.e. prioritization of areas-at-risk) mainly due to its simplicity and reduced data requirements. On the other hand, the more complex MMF and PESERA models would be valuable as a base of a possible tool for assessing the risk of water contamination in fire-affected water bodies and for testing different land management scenarios.

Topics
  • impedance spectroscopy