People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Yuan, Jinkai
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (17/17 displayed)
- 2024Flowable Electrodes from Colloidal Suspensions of Thin Multiwall Carbon Nanotubescitations
- 2023Stabilized ferroelectric NaNbO3 nanowires for lead-free piezoelectric nanocomposite applicationscitations
- 2023G raphene O xide B ased T ransparent R esins F or A ccurate 3D P rinting of C onductive M aterialscitations
- 2023High‐Energy‐Density Waterborne Dielectrics from Polyelectrolyte‐Colloid Complexescitations
- 2022Water-Processable Cellulosic Nanocomposites as Green Dielectric Films for High-Energy Storagecitations
- 2022Water-processable cellulosic nanocomposites as green dielectric films for high-energy storage ; Energy Stor. Mater.citations
- 2021Inkjet Printing Microcapacitors for Energy Storage
- 2019Absence of giant dielectric permittivity in graphene oxide materials Absence of giant dielectric permittivity in graphene oxide materialscitations
- 2019Shape memory nanocomposite fibers for untethered high-energy microengines.citations
- 2019Shape memory nanocomposite fibers for untethered high-energy microenginescitations
- 2018All-organic microelectromechanical systems integrating electrostrictive nanocomposite for mechanical energy harvestingcitations
- 2018Giant Electrostriction of Soft Nanocomposites Based on Liquid Crystalline Graphenecitations
- 2017Carbon nanotube forest based electrostatic capacitor with excellent dielectric performancescitations
- 2017Giant Electrostrictive Response and Piezoresistivity of Emulsion Templated Nanocompositescitations
- 2015Graphene liquid crystal retarded percolation for new high-k materialscitations
- 2015Graphene liquid crystal retarded percolation for new high-k materialscitations
- 2015Giant Permittivity Polymer Nanocomposites Obtained by Curing a Direct Emulsioncitations
Places of action
Organizations | Location | People |
---|
article
Water-Processable Cellulosic Nanocomposites as Green Dielectric Films for High-Energy Storage
Abstract
With the depletion of fossil resources and the ever-increasing energy demand, it becomes crucial to address the global challenge of sustainable routes to renewable dielectric materials, which can store energy electrostatically for flexible electronics and pulsed power applications. Here, TEMPO-oxidized cellulose nanofibrils with tailored charge density are synthesized and mixed with colloidal poly(vinylidene fluoride) nanoparticles using nontoxic water as solvent to produce flexible and transparent dielectric films. The as-prepared nanomaterials and resulting composite films were extensively characterized. Compared to other biopolymer and ceramic dielectrics, the cellulose-based nanocomposites sandwiched between two thin polyvinyl alcohol layers achieve a high energy density of 7.22 J•cm-3 at breakdown strength of 388 MV•m-1. Furthermore, the stored energy in the laminated composite is released at a rate of 1.60 microseconds, yielding a stable power density of ~3 MW•cm-3 under an applied field of 300 MW•m-1 over 1000 charge/discharge cycles, which is more than ten times greater than that of biaxially-oriented polypropylene. Significantly, these findings pave the way toward environmentally-benign processing of naturallyderived materials for applications in flexible and transparent energy storage devices.