People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Alexander, Nicholas A.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (15/15 displayed)
- 2021A nonlinear frequency-dependent spring-mass model for estimating loading caused by rhythmic human jumpingcitations
- 2020EXPERIMENTAL INVESTIGATION OF LOW COST STEEL WIRE MESH RETROFIT FOR STONE MASONRY IN MUD MORTAR
- 2020EXPERIMENTAL INVESTIGATION OF LOW COST STEEL WIRE MESH RETROFIT FOR STONE MASONRY IN MUD MORTAR
- 2016Nonlinear fiber element modeling of RC bridge piers considering inelastic buckling of reinforcementcitations
- 2016Damage propagation in corroded reinforcing bars with the effect of inelastic buckling under low-cycle fatigue loadingcitations
- 2016On stability of a new side cut destructive method for measuring non-uniform residual stress in thin platescitations
- 2016A multi-mechanical nonlinear fibre beam-column model for corroded columnscitations
- 2015Nonlinear behaviour of corroded RC columns under cyclic loading
- 2015Phenomenological hysteretic model for corroded reinforcing bars including inelastic buckling and low-cycle fatigue degradationcitations
- 2014Finite element investigation of the influence of corrosion pattern on inelastic buckling and cyclic response of corroded reinforcing bars
- 2013Nonlinear cyclic response of corrosion damaged reinforcing bars with the effect of bucklingcitations
- 2013Experimental Investigation and Computational Modelling of Corrosion Induced Mechanical-Geometrical Degradation of Reinforcing Barscitations
- 2013Nonlinear stress-strain behaviour of corrosion-damaged reinforcing bars including inelastic bucklingcitations
- 2012Seismic Performance Evaluation of RC Bridge Piers Subject to Combined Earthquake Loading and Material Deterioration in Aggressive Environment
- 2012Stress-Strain Response of Corroded Reinforcing Bars under Monotonic and Cyclic Loading
Places of action
Organizations | Location | People |
---|
article
A nonlinear frequency-dependent spring-mass model for estimating loading caused by rhythmic human jumping
Abstract
An empirical nonlinear, frequency-dependant, spring-mass system is conjectured for modelling human rhythmic jumping. This model is vital for correctly estimating human-structure dynamic interactions. An experimental study was employed to evaluate the leg mechanics and dynamic loading of a human jumper. Testing was performed over a large range of prescribed jumping frequencies. Subjects performed rhythmic jumps on a force plate and they were monitored by a motion capture system from which the displacement of the centre of mass was identified. Least squares system identification was utilised to determine the parameters of the spring-mass model for human rhythmic jumping. A nonlinear stiffness, rather than a conventional linear spring, is proposed to better capture the observed behaviour during periodic jumping. Force-displacement curves of each subject, during the contact phase of rhythmic jumping, were explored. These display an array of both classical Duffing’s type nonlinear softening and hardening spring stiffnesses over the range of jumping frequencies. The coefficients of the Duffing’s type model are observed to be highly sensitive to jumping frequency. A Poincaré section (phase-space) representation is used to visualise the jumping attractor’s topology. Thus, an experimental bifurcation analysis is performed suggesting the presence of both period doubling and fold bifurcations. These describe the transition from observed period-2 to period-1 jumping and coexisting low/high amplitude jumping behaviour. This study presents a framework for characterising the nonlinear loading of a human performing rhythmic jumping from direct measurements of force and displacement.