Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Alanen, Mika

  • Google
  • 5
  • 12
  • 44

Tampere University

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (5/5 displayed)

  • 2023Performance of structural stainless steel following a fire22citations
  • 2021Performance of structural stainless steel following a fire22citations
  • 2019Experimental study on temperature distribution of sandwich panel joints in firecitations
  • 2019Numerical analysis of the behaviour of stainless steel cellular beam in firecitations
  • 2019Temperature distribution of trapezoidal sheeting in firecitations

Places of action

Chart of shared publication
Cashell, Katherine
3 / 3 shared
Rossi, Barbara
2 / 44 shared
Molkens, Tom
2 / 3 shared
Malaska, Mikko
1 / 1 shared
Malaska, Mikko Tapio
4 / 5 shared
Cabova, Kamila
2 / 2 shared
Pajunen, Sami
2 / 2 shared
Liskova, Nikola
2 / 2 shared
Wald, Frantisek
2 / 4 shared
Mela, Kristo
3 / 17 shared
Khan, Mustesin
1 / 1 shared
Arha, Tesfamariam
1 / 1 shared
Chart of publication period
2023
2021
2019

Co-Authors (by relevance)

  • Cashell, Katherine
  • Rossi, Barbara
  • Molkens, Tom
  • Malaska, Mikko
  • Malaska, Mikko Tapio
  • Cabova, Kamila
  • Pajunen, Sami
  • Liskova, Nikola
  • Wald, Frantisek
  • Mela, Kristo
  • Khan, Mustesin
  • Arha, Tesfamariam
OrganizationsLocationPeople

article

Performance of structural stainless steel following a fire

  • Cashell, Katherine
  • Malaska, Mikko Tapio
  • Rossi, Barbara
  • Molkens, Tom
  • Alanen, Mika
Abstract

Stainless steel offers excellent mechanical properties as well as corrosion resistance and performs better in a fire compared to carbon steel in that it retains its strength and stiffness for a longer duration. The current paper is focussed on the post-fire condition, which has received limited attention to date from the research community. The motivation for the work is to show that stainless steel elements that have been exposed to fire can be re-instated with minimal additional costs in a short time frame. The paper proceeds with a description of recent material tests into the residual properties of grade 1.4301 austenitic stainless steel, following exposure to elevated temperature. Two different types of test were conducted and these are described. Firstly, a series of tensile tests were completed on coupons taken from a loaded stainless steel beam previously examined under fire conditions. Secondly, a set of virgin coupons (i.e. which have not been previously heated or tested) were exposed to different levels of elevated temperature and cooling procedures. This is with a view to understanding the ability of structural elements made from this material to survive a fire and continue in service. The results are employed along with other data obtained from the literature to conduct a detailed study into the design considerations. The collected data includes information on the proof and ultimate strengths, ultimate strain and Young's modulus and the extent to which these are affected following the occurrence of a fire. The study is done for ferritic, austenitic and duplex stainless steel.By focusing on the effect of a fire on the mechanical properties after cooling using a statistical approach, safety factors are proposed together with a reduced reliability index based on economic and social considerations.

Topics
  • impedance spectroscopy
  • Carbon
  • stainless steel
  • corrosion
  • strength