Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Andrade, Sebastião Arthur Lopes De

  • Google
  • 2
  • 8
  • 19

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2020Testing and design of stainless steel staggered bolted connections18citations
  • 2013Numerical and experimental assessment of stainless and carbon bolted tensioned members with staggered bolts1citations

Places of action

Chart of shared publication
Vellasco, Pedro
2 / 4 shared
Liang, Yating
1 / 2 shared
Gardner, Leroy
1 / 20 shared
Zhao, Ou
1 / 5 shared
Lima, Luciano Rodrigues Ornelas De
2 / 3 shared
Santos, João De Jesus Dos
2 / 2 shared
Silva, José Guilherme Santos Da
1 / 1 shared
Silva, André Tenchini Da
1 / 2 shared
Chart of publication period
2020
2013

Co-Authors (by relevance)

  • Vellasco, Pedro
  • Liang, Yating
  • Gardner, Leroy
  • Zhao, Ou
  • Lima, Luciano Rodrigues Ornelas De
  • Santos, João De Jesus Dos
  • Silva, José Guilherme Santos Da
  • Silva, André Tenchini Da
OrganizationsLocationPeople

article

Testing and design of stainless steel staggered bolted connections

  • Vellasco, Pedro
  • Liang, Yating
  • Andrade, Sebastião Arthur Lopes De
  • Gardner, Leroy
  • Zhao, Ou
  • Lima, Luciano Rodrigues Ornelas De
  • Santos, João De Jesus Dos
Abstract

he present paper reports a thorough experimental investigation into the net section failure behaviour and capacity of stainless steel staggered bolted connections in tension. The testing programme was carried out on 31 stainless steel staggered bolted connection specimens, with 18 made of austenitic stainless steel (grade EN 1.4301), 7 made of duplex stainless steel (grade EN 1.4462) and 6 made of ferritic stainless steel (grade EN 1.4016). The geometric parameters, including the transverse and staggered pitches, and the staggered bolt hole patterns of the connection specimens, were varied. The test setup and procedures, as well as the key experimentally observed results, including the net section failure modes and loads, are reported in detail. The experimentally obtained net section failure loads and modes are analysed and discussed, and then utilised to assess the accuracy of the established design rules for stainless steel staggered bolted connections, given in the European, American and Australian/New Zealand standards. All three examined standards consider (i) net section fracture and (ii) gross section yielding in the design of stainless steel staggered bolted connections, and specify that the design failure load shall be taken as the minimum value calculated from all potential failure modes. It was found that the current design standards lead to overly conservative and scattered failure load predictions as well as inaccurate failure mode predictions. A new design approach based on the continuous strength method (CSM) is proposed, and shown to result in substantially improved predictions of both failure loads and failure modes.

Topics
  • impedance spectroscopy
  • stainless steel
  • strength