People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Belinha, J.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (22/22 displayed)
- 2023Analysis of Lattices Based on TPMS for Bone Scaffold
- 2022A bio-inspired remodelling algorithm combined with a natural neighbour meshless method to obtain optimized functionally graded materialscitations
- 2021The Radial Point Interpolation Method in the Bending Analysis Of Symmetric Laminates Using HSDTS
- 2021A meshless study of antisymmetric angle-ply laminates using high-order shear deformation theoriescitations
- 2021The influence of infill density gradient on the mechanical properties of PLA optimized structures by additive manufacturingcitations
- 2021The bending behaviour of antisymmetric cross-ply laminates using high-order shear deformation theories and a Radial Point Interpolation Methodcitations
- 2021Homogenizing the Elastic Properties of Composite Material Using the NNRPIM
- 2021Numerical analysis of honeycomb-shaped polymeric foams using the FEM and the RPIMcitations
- 2021Using a radial point interpolation meshless method and the finite element method for application of a bio-inspired remodelling algorithm in the design of optimized bone scaffoldcitations
- 2021Simulation of the viscoplastic extrusion process using the radial point interpolation meshless methodcitations
- 2020Analysis of antisymmetric cross-ply laminates using high-order shear deformation theories: a meshless approachcitations
- 2020The numerical analysis of symmetric cross-ply laminates using the natural neighbour radial point interpolation method and high-order shear deformation theoriescitations
- 2018The analysis of composite laminated beams using a 2D interpolating meshless techniquecitations
- 2018Simulating fracture propagation in brittle materials using a meshless approachcitations
- 2017Aluminum foam sandwich with adhesive bonding: Computational modelingcitations
- 2017The computational analysis of composite laminates: Meshless formulation
- 2016Vibration analysis of laminated soft core sandwich plates with piezoelectric sensors and actuatorscitations
- 2016The analysis of laminated plates using distinct advanced discretization meshless techniquescitations
- 2013Composite laminated plate analysis using the natural radial element methodcitations
- 2010Composite Laminated Plates: A 3D Natural Neighbor Radial Point Interpolation Method Approachcitations
- 2010A 3D shell-like approach using a natural neighbour meshless method: Isotropic and orthotropic thin structurescitations
- 2007Nonlinear analysis of plates and laminates using the element free Galerkin methodcitations
Places of action
Organizations | Location | People |
---|
article
The numerical analysis of symmetric cross-ply laminates using the natural neighbour radial point interpolation method and high-order shear deformation theories
Abstract
Composite structures are commonly analysed using the Finite Element Method (FEM). However, new accurate and efficient discrete numerical techniques have appeared recently - the meshless methods. Thus, this work uses a meshless method - the Natural Neighbour Radial Point Interpolation Method (NNRPIM) - to perform an elasto-static analysis of composite laminated plates. Meshless methods only require an unstructured nodal distribution to discretize the problem domain. In order to numerically integrate the integro-differential equation from the Galerkin weak formulation, a background integration mesh is constructed using the Voronoi diagram. Then, the nodal connectivity is enforced using the 'influence-cell' concept and the shape functions are obtained. In this work, laminated composite plates are analysed using distinct equivalent single layer theories, considering different transverse high-order shear deformation laws. Thus, several third-order, exponential and trigonometric transverse shear deformation theories are combined with the NNRPIM to analyse the structural response of composite laminated plates. In the end, composite laminated plates are numerically analysed and the meshless solutions are compared with the analytical solution available in the literature. Therefore, this works contributes with new solutions for classic composite symmetric cross-ply laminated plates and provides a comparative study on the accuracy of some high-order shear deformation theories (HSDTs).