Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Khan, Aamir

  • Google
  • 1
  • 5
  • 28

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2020Quantifying impacts on remote photogrammetric inspection using unmanned aerial vehicles28citations

Places of action

Chart of shared publication
Zhang, Dayi
1 / 1 shared
Dobie, Gordon
1 / 21 shared
Watson, Robert
1 / 2 shared
Macleod, Charles N.
1 / 45 shared
Pierce, Stephen
1 / 51 shared
Chart of publication period
2020

Co-Authors (by relevance)

  • Zhang, Dayi
  • Dobie, Gordon
  • Watson, Robert
  • Macleod, Charles N.
  • Pierce, Stephen
OrganizationsLocationPeople

article

Quantifying impacts on remote photogrammetric inspection using unmanned aerial vehicles

  • Zhang, Dayi
  • Dobie, Gordon
  • Watson, Robert
  • Khan, Aamir
  • Macleod, Charles N.
  • Pierce, Stephen
Abstract

Remote photogrammetric inspection is a Non-Destructive Testing method used to quantify surface integrity and detect external discontinuities. The mobility and size of an unmanned aerial vehicle (UAV) offer the flexibility to quickly deploy remote photogrammetric inspections for large-scale assets. In this paper, the results of a photogrammetric inspection are presented as a 3D profile, reconstructed from UAV captured images. Experiments were conducted indoors using a wind turbine blade section obtained from a recently decommissioned asset. The naturally occurring surface features representative of environmental wear were augmented with a small number of artificial features to aid in the visualisation of inspection quality. An autonomous UAV system for photogrammetric inspections is demonstrated and the influence of image parameters such as environmental light levels, motion blur and focal blur quantified in terms of their impact on the inspection accuracy. Over the range of parameter values studied, the poorest scenario was observed to cause a degradation in reconstruction error by a factor of 13 versus the optimal. Reconstruction quality when employing a laser range scanner to maintain standoff distance relative to the object during flight was also investigated. In this schema, the controller automatically generated a real-time adaptive flight path to follow the outer profile of the wind turbine blade and, consequently, demonstrated improved image quality during close-range inspection of an object with complex geometry.Inspection accuracy was quantified using the error of the photogrammetric reconstruction as compared to a model acquired using independent metrology equipment. While utilising the laser-based adaptive path, error in the reconstructed geometry was reduced by a factor of 2.7 versus a precomputed circular path. In the best case, the mean deviation was below 0.25 mm. Instances of wind turbine blade damage such as edge crushing, surface imperfections, early stage leading edge erosion were clearly observed in the textured 3D reconstruction profiles, indicating the utility of the successful inspection process. The results of this paper evaluate the impact of optical environmental effects on photogrammetric inspection accuracy, offering practical insight towards mitigation of negative effects.

Topics
  • impedance spectroscopy
  • surface
  • mobility
  • experiment