People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Shamass, Rabee
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (15/15 displayed)
- 2023Mechanical and GWP Assessment of Concrete Using Blast Furnace Slag, Silica Fume and Recycled Aggregatecitations
- 2022A Numerical Study of Shape Memory Alloy (SMA) Reinforced Beam Subjected to Seismic Loading
- 2022Mechanical Properties of Bamboo Core Sandwich Panels
- 2022Experimental investigation on the flexural behaviour of stainless steel reinforced concrete beamscitations
- 2022Structural performance of stainless steel reinforced concrete members: A reviewcitations
- 2021Application of Artificial Neural Networks for web-post shear resistance of cellular steel beamscitations
- 2021Ultimate behaviour and serviceability analysis of stainless steel reinforced concrete beamscitations
- 2021Impact of chopped basalt fibres on the mechanical proper- ties of concrete
- 2020Bond behaviour of austenitic stainless steel reinforced concretecitations
- 2020Experimental investigation into the flexural behaviour of basalt FRP reinforced concrete memberscitations
- 2019Analysis of concrete beams reinforced with stainless steel
- 2019Flexural analysis and design of stainless steel reinforced concrete beamscitations
- 2018Bending Moment Capacity of Stainless Steel-Concrete Composite Beams
- 2018Analysis of Stainless Steel-Concrete Composite Beamscitations
- 2017Behaviour of Composite Beams Made Using High Strength Steelcitations
Places of action
Organizations | Location | People |
---|
article
Flexural analysis and design of stainless steel reinforced concrete beams
Abstract
The use of stainless steel reinforcement in concrete structures has increased in recent years, particularly in applications where corrosion and chemical resistance is desirable such as bridges, retaining walls and tunnels. Stainless steel has a wide range of attractive properties including excellent mechanical strength, fire resistance, durability and also a long life-cycle compared with carbon steel. However, it is also has a higher initial cost, and therefore needs to be used carefully and efficiently. The existing material models provided for the structural analysis of reinforced concrete members in current design standards, such as Eurocode 2, are not appropriate for stainless steel reinforced concrete and lead to overly conservative (or indeed unconservative in some cases) predictions of the section capacity. Generally, there is a lack of data in the public domain regarding the behaviour of concrete beams reinforced with stainless steel, mainly owing to this being a relatively new and novel topic. In this context, the current paper provides a detailed background of the existing information on stainless steel reinforced concrete, as well a discussion on the potential advantages and challenges. Then, attention is given to analysing the behaviour of stainless steel reinforced concrete beams by developing the Continuous Strength Method to predict the bending moment capacity. A finite element model has been develop in order to further assess the performance, and this is also used to conduct a parametric study of the most influential properties. It is concluded that the proposed analytical models provides a reliable solution for predicting the capacity of concrete beams reinforced with stainless steel.